Skip to main content

Embryo Transfer Technology in Cattle

  • Chapter
  • First Online:
Book cover Animal Biotechnology 1

Abstract

Although the first mammalian embryo transfers were done more than 100 years ago, commercial bovine embryo transfer came into being in the early 1970s with the importation of European breeds of cattle into North America. Since that time commercial bovine embryo transfer has grown throughout the world, and in 2016, approximately one million bovine embryos were transferred, and several thousands of embryos were transported internationally. Because in vivo-derived bovine embryos can be made specified pathogen-free by washing procedures, they provide the ideal means of moving animal genetics around the world. Embryo transfer techniques have improved over the years so that new methods of controlling ovarian function facilitate superstimulation of donors and synchronization of recipients and nonsurgical procedures facilitate on-farm embryo transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams GP (1994) Control of ovarian follicular wave dynamics in cattle; implications for synchronization and superstimulation. Theriogenology 4:19–24

    Article  Google Scholar 

  • Adams GP, Matteri RL, Kastelic JP et al (1992a) Association between surges of follicle stimulating hormone and the emergence of follicular waves in heifers. J Reprod Fertil 94:177–188

    Article  PubMed  CAS  Google Scholar 

  • Adams GP, Matteri RL, Ginther OJ (1992b) The effect of progesterone on growth of ovarian follicles, emergence of follicular waves and circulating FSH in heifers. J Reprod Fertil 95:627–640

    Article  Google Scholar 

  • Adams GP, Jaiswal R, Singh J et al (2008) Progress in understanding ovarian follicular dynamics in cattle. Theriogenology 69:72–80

    Article  PubMed  CAS  Google Scholar 

  • Ambrose JD, Drost RL, Monson RL et al (1999) Efficacy of timed embryo transfer with fresh and frozen in vitro-produced embryos to increase pregnancy rates in heat-stressed dairy cattle. J Dairy Sci 82:2369–2376

    Article  PubMed  CAS  Google Scholar 

  • Armstrong D (1993) Recent advances in superovulation of cattle. Theriogenology 39:7–24

    Article  Google Scholar 

  • Baracaldo MI, Martinez M, Adams GP et al (2000) Superovulatory response following transvaginal follicle ablation in cattle. Theriogenology 53:1239–1250

    Article  PubMed  CAS  Google Scholar 

  • Barth AD (1993) Evaluation of frozen bovine semen by the veterinary practitioner. Reviewers: WG Parker, EG Robertson, RG Saacke, WH Cardwell, JR Mitchell, GW McKay. In: Society for Theriogenology Handbook B-9. Society for Theriogenology, Pike Road, AL, USA

    Google Scholar 

  • Baruselli PS, Marques MO, Carvalho NAT et al (2000) Ovsynch protocol with fixed-time embryo transfer increasing pregnancy rates in bovine recipients. Arq Fac Vet UFRGS, Porto Alegre, Brazil 28:205 (Abstract)

    Google Scholar 

  • Baruselli PS, Sá Fhilo M, Martins CM et al (2006) Superovulation and embryo transfer in Bos indicus cattle. Theriogenology 65:77–88

    Article  PubMed  Google Scholar 

  • Baruselli PS, Ferreira RM, Sá Filho MF et al (2010) Bovine embryo transfer recipient synchronization and management in tropical environments. Reprod Fertil Dev 22:67–74

    Article  PubMed  CAS  Google Scholar 

  • Baruselli PS, Ferreira RM, Sales JNS et al (2011) Timed embryo transfer programs for the management of donor and recipient cows. Theriogenology 76:1583–1593

    Article  PubMed  CAS  Google Scholar 

  • Batista EOS, Macedo GG, Sala RV et al (2014) Plasma anti-Mullerian hormone as a predictor of ovarian antral follicular population in Bos indicus (Nelore) and Bos taurus (Holstein) heifers. Reprod Domest Anim 49:448–452

    Article  PubMed  CAS  Google Scholar 

  • Bergfelt DR, Lightfoot KC, Adams GP (1994) Ovarian dynamics following ultrasound-guided transvaginal follicle ablation in heifers. Theriogenology 42:895–907

    Article  Google Scholar 

  • Bergfelt DR, Bó GA, Mapletoft RJ et al (1997) Superovulatory response following ablation-induced follicular wave emergence at random stages of the oestrous cycle in cattle. Anim Reprod Sci 49:1–12

    Article  PubMed  CAS  Google Scholar 

  • Betteridge KJ (2003) A history of farm animal embryo transfer and some associated techniques. Anim Reprod Sci 79:203–244

    Article  PubMed  Google Scholar 

  • Blondin P, Bousquet D, Twagiramungu H et al (2002) Manipulation of follicular development to produce developmentally competent bovine oocytes. Biol Reprod 66:38–43

    Article  PubMed  CAS  Google Scholar 

  • Bó GA, Mapletoft RJ (2014) Historical perspectives and recent research on superovulation in cattle. Theriogenology 81:38–48

    Article  PubMed  Google Scholar 

  • Bó GA, Hockley DK, Nasser LF et al (1994) Superovulatory response to a single subcutaneous injection of Folltropin-V in beef cattle. Theriogenology 42:963–975

    Article  PubMed  Google Scholar 

  • Bó GA, Adams GP, Pierson RA et al (1995) Exogenous control of follicular wave emergence in cattle. Theriogenology 43:31–40

    Article  Google Scholar 

  • Bó GA, Adams GP, Pierson RA et al (1996) Effect of progestogen plus E-17β treatment on superovulatory response in beef cattle. Theriogenology 45:897–910

    Article  PubMed  Google Scholar 

  • Bó GA, Baruselli PS, Moreno D et al (2002) The control of follicular wave development for self-appointed embryo transfer programs in cattle. Theriogenology 57:53–72

    Article  PubMed  Google Scholar 

  • Bó GA, Cutaia L, Chesta P et al (2005) Application of fixed-time artificial insemination and embryo transfer programs in beef cattle operations. In: Proceedings of the joint meeting of the American Embryo Transfer Association & Canadian Embryo Transfer Association, Minneapolis, MN, pp.37–59

    Google Scholar 

  • Bó GA, Baruselli PS, Chesta P et al (2006) The timing of ovulation and insemination schedules in superstimulated cattle. Theriogenology 65:89–101

    Article  PubMed  Google Scholar 

  • Bó GA, Guerrero DC, Adams GP (2008) Alternative approaches to setting up donor cows for superstimulation. Theriogenology 69:81–87

    Article  PubMed  CAS  Google Scholar 

  • Bó GA, Coelho Peres L, Cutaia LE et al (2012) Treatments for the synchronisation of bovine recipients for fixed-time embryo transfer and improvement of pregnancy rates. Reprod Fertil Dev 24:272–277

    Article  CAS  Google Scholar 

  • Bridges GA, Helser LA, Grum DE et al (2008) Decreasing the interval between GnRH and PGF2α from 7 to 5 days and lengthening proestrus increases timed-AI pregnancy rates in beef cows. Theriogenology 69:843–851

    Article  PubMed  CAS  Google Scholar 

  • Bungartz L, Niemann H (1994) Assessment of the presence of a dominant follicle and selection of dairy cows suitable for superovulation by a single ultrasound examination. J Reprod Fertil 101:583–591

    Article  PubMed  CAS  Google Scholar 

  • Carmichael RA (1980) History of the international embryo transfer society – Part I. Theriogenology 13:3–6

    Article  PubMed  CAS  Google Scholar 

  • Carter F, Forde N, Duffy P et al (2008) Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod Fertil Dev 20:368–375

    Article  PubMed  CAS  Google Scholar 

  • Carvalho PD, Souza AH, Amundson MC et al (2014a) Relationships between fertility and postpartum changes in body condition and body weight in lactating dairy cows. J Dairy Sci 97:1–18

    Article  CAS  Google Scholar 

  • Carvalho PD, Hackbart KS, Bender RW et al (2014b) Use of a single injection of long-acting recombinant bovine FSH to superovulate Holstein heifers: a preliminary study. Theriogenology 82:481–489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christensen LG (1991) Use of embryo transfer in future cattle breeding schemes. Theriogenology 35:141–156

    Article  Google Scholar 

  • Colazo MG, Ambrose DJ (2011) Neither duration of progesterone insert nor initial GnRH treatment affected pregnancy per timed-insemination in dairy heifers subjected to a Co-synch protocol. Theriogenology 76:578–588

    Article  PubMed  CAS  Google Scholar 

  • DeJarnette JM, Saacke RG, Bame J et al (1992) Accessory sperm: their importance to fertility and embryo quality, and attempts to alter their numbers in artificially inseminated cattle. J Anim Sci 70:484–491

    Article  PubMed  CAS  Google Scholar 

  • Dieleman S, Bevers M, Vos P et al (1993) PMSG/anti-PMSG in cattle: a simple and efficient superovulatory treatment. Theriogenology 39:25–42

    Article  Google Scholar 

  • Drost M, Brand A, Aaarts MH (1976) A device for nonsurgical recovery of bovine embryos. Theriogenology 6:503–508

    Article  Google Scholar 

  • Edwards L, Rahe C, Griffin J et al (1987) Effect of transportation stress on ovarian function in superovulated Hereford heifers. Theriogenology 28:291–299

    Article  PubMed  CAS  Google Scholar 

  • Elsden RP, Hasler JF, Seidel GE Jr (1976) Non-surgical recovery of bovine eggs. Theriogenology 6:523–532

    Article  PubMed  CAS  Google Scholar 

  • Folman Y, Kaim M, Herz Z et al (1990) Comparison of methods for the synchronization of estrous cycles in dairy cows. 2. Effects of progesterone and parity on conception. J Dairy Sci 73:2817–2825

    Google Scholar 

  • García Guerra A, Sala RV, Baez GM et al (2016) Treatment with GnRH on Day 5 reduces pregnancy loss in heifers receiving in vitro-produced expanded blastocysts. Reprod Fertil Dev 28:185 (Abstract)

    Article  Google Scholar 

  • Garcia A, Salaheddine M (1998) Effects of repeated ultrasound-guided transvaginal follicular aspiration on bovine oocyte recovery and subsequent follicular development. Theriogenology 50:575–585

    Article  PubMed  CAS  Google Scholar 

  • Garcia A, Mapletoft RJ, Kennedy R (1994) Effect of semen dose on fertilization and embryo quality in superovulated cows. Theriogenology 41:202 (Abstract)

    Article  Google Scholar 

  • Ginther OJ, Knopf L, Kastelic JP (1989) Temporal associations among ovarian events in cattle during oestrous cycles with two or three follicular waves. J Reprod Fertil 87:223–230

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez A, Wang H, Carruthers TD et al (1994) Increased ovulation rates in PMSG – stimulated beef heifers treated with a monoclonal PMSG antibody. Theriogenology 41:1631–1642

    Article  CAS  Google Scholar 

  • Gonzalez-Reyna A, Lussier JG, Carruthers TD et al (1990) Superovulation of beef heifers with Folltropin: a new FSH preparation containing reduced LH activity. Theriogenology 33:519–529

    Article  Google Scholar 

  • Guilbault LA, Grasso F, Lussier JG et al (1991) Decreased superovulatory responses in heifers superovulated in the presence of a dominant follicle. J Reprod Fertil 91:81–89

    Article  PubMed  CAS  Google Scholar 

  • Hasler JF (2003) The current status and future of commercial embryo transfer in cattle. Anim Reprod Sci 79:245–264

    Article  PubMed  Google Scholar 

  • Hasler JF (2010) Synthetic media for culture, freezing and vitrification of bovine embryos. Reprod Fertil Dev 22:119–125

    Article  PubMed  CAS  Google Scholar 

  • Hasler J, Hockley D (2012) Efficacy of hyaluronan as a diluent for a two injection FSH superovulation protocol in Bos taurus beef cows. Reprod Domest Anim 47:459 (Abstract)

    Google Scholar 

  • Hasler JF, McCauley AD, Schermerhorn EC et al (1983) Superovulatory responses of Holstein cows. Theriogenology 20:1983–1999

    Google Scholar 

  • Hasler JF, McCauley AD, Lathrop WF et al (1987) Effect of donor-embryo-recipient interactions on pregnancy rate in a large-scale bovine embryo transfer program. Theriogenology 27:139–168

    Article  Google Scholar 

  • Hawk HW, Conley HH, Wall RJ et al (1988) Fertilization rates in superovulating cows after deposition of semen on the infundibulum, near the uterotubal junction or after insemination with high numbers of sperm. Theriogenology 29:1131–1142

    Article  PubMed  CAS  Google Scholar 

  • Hinshaw RH (1999) Formulating ET contracts. In: Proceedings of the society for theriogenology, Nashville, TN, USA, pp 399–404

    Google Scholar 

  • Hinshaw RH, Switzer ML, Mapletoft RJ et al (2015) A comparison of two approaches for the use of GnRH to synchronize follicle wave emergence for superovulation. Reprod Fertil Dev 27:263 (Abstract)

    Article  Google Scholar 

  • Hiraizumi S, Nishinomiya H, Oikawa T et al (2015) Superovulatory response in Japanese Black cows receiving a single subcutaneous porcine follicle–stimulating hormone treatment or six intramuscular treatments over three days. Theriogenology 83:466–473

    Article  PubMed  CAS  Google Scholar 

  • Ireland JJ, Ward F, Jimenez-Krassel F et al (2007) Follicle numbers are highly repeatable within individual animals but are inversely correlated with FSH concentrations and the proportion of good-quality embryos after ovarian stimulation in cattle. Hum Reprod 22:1687–1695

    Article  PubMed  CAS  Google Scholar 

  • Ireland JJ, Smith GW, Scheetz D et al (2011) Does size matter in females? An overview of the impact of the high variation in the ovarian reserve on ovarian function and fertility, utility of anti-Mullerian hormone as a diagnostic marker for fertility and causes of variation in the ovarian reserve in cattle. Reprod Fertil Dev 23(1):14

    Article  Google Scholar 

  • Kastelic JP, Knopf L, Ginther OJ (1990) Effect of day of prostaglandin F treatment on selection and development of the ovulatory follicle in heifers. Anim Reprod Sci 23:169–180

    Article  CAS  Google Scholar 

  • Kelly P, Duffy P, Roche JF et al (1997) Superovulation in cattle: effect of FSH type and method of administration on follicular growth, ovulatory response and endocrine patterns. Anim Reprod Sci 46:1–14

    Article  PubMed  CAS  Google Scholar 

  • Kim HI, Son DS, Yeon H et al (2001) Effect of dominant follicle removal before superstimulation on follicular growth, ovulation and embryo production in Holstein cows. Theriogenology 55:937–945

    Article  PubMed  CAS  Google Scholar 

  • Lamb GC, Stevenson JS, Kesler DJ et al (2001) Inclusion of an intravaginal progesterone insert plus GnRH and prostaglandin F2α for ovulation control in postpartum suckled beef cows. J Anim Sci 79:2253–2259

    Article  PubMed  CAS  Google Scholar 

  • Lane EA, Austin EJ, Crowe MA (2008) Estrus synchronisation in cattle-current options following the EU regulations restricting use of estrogenic compounds in food-producing animals: a review. Anim Reprod Sci 109:1–16

    Article  PubMed  CAS  Google Scholar 

  • Larkin S, Chesta P, Looney C et al (2006) Distribution of ovulation and subsequent embryo production using Lutropin and estradiol-17β for timed AI of superstimulated beef females. Reprod Fertil Dev 18:289 (Abstract)

    Article  Google Scholar 

  • Larson LL, Ball PJH (1992) Regulation of estrous cycles in dairy cattle: a review. Theriogenology 38:255–267

    Article  PubMed  CAS  Google Scholar 

  • Laster DB (1972) Disappearance of and uptake of 125I FSH in the rat, rabbit, ewe and cow. J Reprod Fertil 30:407–415

    Article  PubMed  CAS  Google Scholar 

  • Lima FS, Ayres H, Favoreto MG et al (2011) Effects of gonadotropin releasing hormone at initiation of the 5-d timed artificial insemination (AI) program and timing of induction of ovulation relative to AI on ovarian dynamics and fertility of dairy heifers. J Dairy Sci 94:4997–5004

    Article  PubMed  CAS  Google Scholar 

  • Lindsell CE, Murphy BD, Mapletoft RJ (1986) Superovulatory and endocrine responses in heifers treated with FSH-P at different stages of the estrous cycle. Theriogenology 26:209–219

    Article  PubMed  CAS  Google Scholar 

  • Lohuis MM (1995) Potential benefits of bovine embryo-manipulation technologies to genetic improvement programs. Theriogenology 43:51–60

    Article  Google Scholar 

  • Looney CR (1986) Superovulation in beef females. In: Proceedings of the annual meeting of the American Embryo Transfer Association, Fort Worth, TX, pp 16–29

    Google Scholar 

  • Looney CR, Stutts KJ, Novicke AK et al (2010) Advancements in estrus synchronization of Brahman-influenced embryo transfer recipient females. In: Proceedings of the joint meeting of the American Embryo Transfer Association & Canadian Embryo Transfer Association, Charlotte, NC, pp 17–22

    Google Scholar 

  • Lovie M, Garcia A, Hackett A et al (1994) The effect of dose schedule and route of administration on superovulatory response to Folltropin in Holstein cows. Theriogenology 41:241 (Abstract)

    Article  Google Scholar 

  • Mantovani AP, Reis EL, Gacek F et al (2005) Prolonged use of a progesterone-releasing intravaginal device (CIDR®) for induction of persistent follicles in bovine embryo recipients. Anim Reprod 2:272–277

    Google Scholar 

  • Mapletoft RJ (1985) Embryo transfer in the cow: general procedures. Rev Sci Tech Off Int Epiz 4:843–858

    Article  Google Scholar 

  • Mapletoft RJ (1986) Bovine embryo transfer. In: Morrow DA (ed) Current therapy in theriogenology II. WB Saunders Co, Philadelphia, PA, pp 54–63

    Google Scholar 

  • Mapletoft RJ, Bó GA (2004) The control of ovarian function for embryo transfer: superstimulation of cows with normal or abnormal ovarian function. In: Proceedings of 23 world buiatrics congress, Quebec City, QC, 34(1 and 2), pp 67–68

    Google Scholar 

  • Mapletoft RJ, Bó GA (2016) Bovine embryo transfer. In: I.V.I.S. (Ed.), IVIS reviews in veterinary medicine. International Veterinary Information Service (www.ivis.org), Ithaca. Document No. R0104.1106S

  • Mapletoft RJ, Hasler JF (2005) Assisted reproductive technologies in cattle: a review. Rev Sci Tech Off Int Epiz 24:393–403

    Article  CAS  Google Scholar 

  • Mapletoft RJ, Steward KB, Adams GP (2002) Recent advances in the superovulation of cattle. Reprod Nutr Dev 42:1–11

    Article  CAS  Google Scholar 

  • Mapletoft RJ, Martinez MF, Colazo MG et al (2003) The use of controlled internal drug release devices for the regulation of bovine reproduction. J Anim Sci 1(E. Suppl 2):E28–E36

    Google Scholar 

  • Marques MO, Madureira EH, Bó GA et al (2002) Ovarian ultrasonography and plasma progesterone concentration Bos taurus x Bos indicus heifers administered different treatments on Day 7 of the estrous cycle. Theriogenology 57:548 (Abstract)

    Google Scholar 

  • Marques MO, Nasser LF, Silva RCP et al (2003) Increased pregnancy rates in Bos taurus x Bos indicus embryo recipients with treatments that increase plasma progesterone concentrations. Theriogenology 59:369 (Abstract)

    Google Scholar 

  • Martinez MF, Adams GP, Bergfelt D et al (1999) Effect of LH or GnRH on the dominant follicle of the first follicular wave in heifers. Anim Reprod Sci 57:23–33

    Article  PubMed  CAS  Google Scholar 

  • Martinez MF, Kastelic JP, Adams GP et al (2002) The use of a progesterone-releasing device (CIDR) or melengestrol acetate with GnRH, LH or estradiol benzoate for fixed-time AI in beef heifers. J Anim Sci 80:1746–1751

    Article  PubMed  CAS  Google Scholar 

  • Martins CM, Rodrigues CA, Vieira LM et al (2012) The effect of timing of the induction of ovulation on embryo production in superstimulated lactating Holstein cows undergoing fixed-time artificial insemination. Theriogenology 78:974–980

    Article  PubMed  CAS  Google Scholar 

  • Mayor JC, Tribulo HE, Bó GA (2008) Pregnancy rates following fixed-time embryo transfer in Bos indicus recipients synchronized with progestin devices and estradiol or GnRH and treated with eCG. Reprod Domest Anim 43(Suppl 3):180 (Abstract)

    Google Scholar 

  • Mikel-Jenson A, Greve T, Madej A et al (1982) Endocrine profiles and embryo quality in the PMSG-PGF-treated cow. Theriogenology 18:33–34

    Article  Google Scholar 

  • Monniaux D, Chupin D, Saumande J (1983) Superovulatory responses of cattle. Theriogenology 19:55–82

    Article  Google Scholar 

  • Monniaux D, Drouilhet L, Rico C et al (2013) Regulation of anti-Mullerian hormone production in domestic animals. Reprod Fertil Dev 25(1):16

    Article  CAS  Google Scholar 

  • Murphy B, Martinuk S (1991) Equine chorionic gonadotropin. Endocr Rev 12:27–44

    Article  PubMed  CAS  Google Scholar 

  • Murphy BD, Mapletoft RJ, Manns J et al (1984) Variability in gonadotrophin preparations as a factor in the superovulatory response. Theriogenology 21:117–125

    Article  CAS  Google Scholar 

  • Nasser LF, Adams GP, Bó GA et al (1993) Ovarian superstimulatory response relative to follicular wave emergence in heifers. Theriogenology 40:713–724

    Article  PubMed  CAS  Google Scholar 

  • Nasser LFT, Penteado L, Rezende CR et al (2011) Fixed time artificial insemination and embryo transfer programs in Brazil. Acta Sci Vet 39(Suppl 1):s15–s22

    Google Scholar 

  • Odde KG (1990) A review of synchronization of estrus in postpartum cattle. J Anim Sci 68:817–830

    Article  PubMed  CAS  Google Scholar 

  • Perry G (2017) 2016 statistics of embryo collection and transfer in domestic farm animals. Embryo Technology Newsletter 35(4):8–23

    Google Scholar 

  • Pierson RA, Ginther OJ (1987) Follicular populations during the estrous cycle in heifers: I. Influence of day. Anim Reprod Sci 14:165–176

    Article  Google Scholar 

  • Ponsart C, Le Bourhis D, Knijn H et al (2014) Reproductive technologies and genomic selection in dairy cattle. Reprod Fertil Dev 26:12–21

    Article  CAS  Google Scholar 

  • Pursley JR, Mee MO, Wiltbank MC (1995) Synchronization of ovulation in dairy cows using PGF2α and GnRH. Theriogenology 44:915–923

    Article  PubMed  CAS  Google Scholar 

  • Remillard R, Martínez MF, Bó GA et al (2006) The use of fixed-time techniques and eCG to synchronize recipients for frozen-thawed bovine IVF embryos. Reprod Fertil Dev 18:204 (Abstract)

    Article  Google Scholar 

  • Revah I, Butler WR (1996) Prolonged dominance of follicles and reduced viability of bovine oocytes. J Reprod Fertil 106:39–47

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues CA, Mancilha RF, Dalalio M et al (2003) Increase of conception rates in IVF embryo recipients treated with GnRH at embryo transfer moment. Acta Sci Vet 33:550–551 (Abstract)

    Google Scholar 

  • Rowe RF, Del Campo MR, Eilts CL et al (1976) A single cannula technique for nonsurgical collection of ova from cattle. Theriogenology 6:471–484

    Article  PubMed  CAS  Google Scholar 

  • Rowe RF, Del Campo MR, Critser JK et al (1980) Embryo transfer in cattle: nonsurgical transfer. Am J Vet Res 41:1024–1028

    PubMed  CAS  Google Scholar 

  • Saacke RG, Nebel RL, Karabius DS et al (1988) Sperm transport and accessory sperm evaluation. In: Proceedings of 12th NAAB technical conference on artificial insemination, pp 7–14

    Google Scholar 

  • Sala LC, Sala RV, Fosado M et al (2016) Factors that influence fertility in an IVF embryo transfer program in dairy heifers. Reprod Fertil Dev 28:183 (Abstract)

    Article  Google Scholar 

  • Santos JEP, Narciso CD, Rivera F et al (2010) Effect of reducing the period of follicle dominance in a timed AI protocol on reproduction of dairy cows. J Dairy Sci 93:2976–2988

    Article  PubMed  CAS  Google Scholar 

  • Saumande J, Chupin D, Mariana J et al (1978) Factors affecting the variability of ovulation rates after PMSG stimulation. In: Sreenan JM (ed) Control of reproduction in the cow. Martinus Nijhoff, The Hague, pp 195–224

    Chapter  Google Scholar 

  • Schams D, Menzer D, Schalenberger E et al (1978) Some studies of the pregnant mare serum gonadotrophin (PMSG) and on endocrine responses after application for superovulation in cattle. In: Sreenan JM (ed) Control of reproduction in the cow. Martinus Nijhoff, The Hague, pp 122–142

    Chapter  Google Scholar 

  • Schiewe MC, Looney CR, Johnson CA et al (1987) Transferable embryo recovery rates following different insemination schedules in superovulated beef cattle. Theriogenology 28:395–406

    Google Scholar 

  • Schneider U, Hahn J (1979) Embryo transfer in Germany. Theriogenology 11:63–80

    Article  Google Scholar 

  • Schultz RH (1980) History of the international embryo transfer society – Part II. Theriogenology 13:7–12

    Article  PubMed  CAS  Google Scholar 

  • Seidel GE Jr (1981) Superovulation and embryo transfer in cattle. Science 211:351–358

    Article  PubMed  Google Scholar 

  • Seidel GE Jr (2010) Brief introduction to whole genome selection in cattle using single nucleotide polymorphisms. Reprod Fertil Dev 22:138–144

    Article  PubMed  CAS  Google Scholar 

  • Shaw DW, Good TE (2000) Recovery rates and embryo quality following dominant follicle ablation in superovulated cattle. Theriogenology 53:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • Singh EL (1985) Disease control: procedures for handling embryos. Rev Sci Tech Off Int Epiz 4:867–872

    Article  Google Scholar 

  • Singh J, Dominguez M, Jaiswal R et al (2004) A simple ultrasound test to predict superstimulatory response in cattle. Theriogenology 62:227–243

    Article  PubMed  Google Scholar 

  • Small J, Colazo M, Ambrose D et al (2004) Pregnancy rate following transfer of in vitro- and in vivo-produced bovine embryos to LH-treated recipients. Reprod Fertil Dev 16:213 (Abstract)

    Article  Google Scholar 

  • Small JA, Colazo MG, Kastelic JP et al (2007) The effects of CIDR and eCG treatment in a GnRH-based protocol for timed-AI or embryo transfer on pregnancy rates in lactating beef cows. Reprod Fertil Dev 19:127–128 (Abstract)

    Article  Google Scholar 

  • Small JA, Colazo MG, Kastelic JP et al (2009) Effects of progesterone pre-synchronization and eCG on pregnancy rates to GnRH-based, timed-AI in beef cattle. Theriogenology 71:698–706

    Article  PubMed  CAS  Google Scholar 

  • Smith C (1988a) Applications of embryo transfer in animal breeding. Theriogenology 29:203–212

    Article  Google Scholar 

  • Smith C (1988b) Genetic improvement of livestock using nucleus breeding units. World Anim Rev 65:2–10

    Google Scholar 

  • Soares JG, Martins CM, Carvalho NAT et al (2011) Timing of insemination using sex-sorted sperm in embryo production with Bos indicus and Bos taurus superovulated donors. Anim Reprod Sci 127:148–153

    Article  PubMed  CAS  Google Scholar 

  • Souza AH, Rozner A, Carvalho PD et al (2014) Relationship between circulating AMH (anti-Mullerian hormone) and embryo production in superovulated high producing donor cows. In: Proceedings of the joint meeting of the American and Canadian Embryo Transfer Associations, Madison, WI, pp 12–16

    Google Scholar 

  • Steel R, Hasler J (2009) Comparison of three different protocols for superstimulation of dairy cattle. Reprod Fertil Dev 21:246 (Abstract)

    Article  Google Scholar 

  • Stoebel D, Moberg G (1982) Repeated acute stress during the follicular phase and luteinizing hormone surge of dairy heifers. J Dairy Sci 65:92–96

    Article  PubMed  CAS  Google Scholar 

  • Stringfellow DA (2010) Recommendations for the sanitary handling of in-vivo-derived embryos. In: Stringfellow DA, Givens MD (eds) Manual of the international embryo transfer society. 4th edn. Savoy, IL, pp 65–68

    Google Scholar 

  • Stringfellow DA, Givens MD (2000) Epidemiologic concerns relative to in vivo and in vitro production of livestock embryos. Anim Prod Sci 60–61:629–642

    Google Scholar 

  • Stringfellow DA, Givens MD (eds) (2010) Manual of the international embryo transfer society, 4th edn. Savoy, IL

    Google Scholar 

  • Stringfellow DA, Givens MD, Waldrop JG (2004) Biosecurity issues associated with current and emerging embryo technologies. Reprod Fertil Dev 16:93–102

    Article  PubMed  Google Scholar 

  • Sutherland W (1991) Biomaterials – novel material from biological sources. In: Byrom D (ed) Stockton Press, New York, NY, pp 307–333

    Google Scholar 

  • Teepker G, Keller DS (1989) Selection of sires originating from a nucleus breeding unit for use in a commercial dairy population. Can J Anim Sci 69:595–604

    Article  Google Scholar 

  • Thatcher WW, Drost M, Savio JD et al (1993) New clinical uses of GnRH and its analogues in cattle. Anim Reprod Sci 33:27–49

    Article  Google Scholar 

  • Thatcher WW, Moreira F, Santos JEP et al (2001) Effects of hormonal treatments on reproductive performance and embryo production. Theriogenology 55:75–89

    Article  PubMed  CAS  Google Scholar 

  • Toner JP, Seifer DB (2013) Why we may abandon basal follicle-stimulating hormone testing: a sea change in determining ovarian reserve using antimullerian hormone. Fertil Steril 99:1825–1830

    Article  PubMed  CAS  Google Scholar 

  • Tribulo R, Balla E, Cutaia L et al (2005) Effect of treatment with GnRH or hCG at the time of embryo transfer on pregnancy rates in cows synchronized with progesterone vaginal devices, estradiol benzoate and eCG. Reprod Fertil Dev 17:234 (Abstract)

    Article  Google Scholar 

  • Tríbulo A, Rogan D, Tribulo H et al (2011) Superstimulation of ovarian follicular development in beef cattle with a single intramuscular injection of Folltropin-V. Anim Reprod Sci 129:7–13

    Article  PubMed  CAS  Google Scholar 

  • Tríbulo A, Rogan D, Tríbulo H et al (2012) Superovulation of beef cattle with a split-single intramuscular administration of Folltropin-V in two concentrations of hyaluronan. Theriogenology 77:1679–1685

    Article  PubMed  CAS  Google Scholar 

  • Vieira LM, Rodrigues CA, Castro Netto A et al (2014) Superstimulation prior to the ovum pick-up to improve in vitro embryo production in lactating and non-lactating Holstein cows. Theriogenology 82:318–324

    Article  PubMed  CAS  Google Scholar 

  • Vieira LM, Rodrigues CA, Castro Netto A et al (2015) Efficacy of a single intramuscular injection of porcine FSH in hyaluronan prior to ovum pick-up in Holstein cattle. Theriogenology 84:1–10

    Article  CAS  Google Scholar 

  • Wallace LD, Breiner CA, Breiner RA et al (2011) Administration of human chorionic gonadotropin at embryo transfer induced ovulation of a first wave dominant follicle, and increased progesterone and transfer pregnancy rates. Theriogenology 75:1506–1515

    Article  PubMed  CAS  Google Scholar 

  • Walsh JH, Mantovani R, Duby RT et al (1993) The effects of once or twice daily injections of p-FSH on superovulatory response in heifers. Theriogenology 40:313–321

    Article  PubMed  CAS  Google Scholar 

  • Wehrman ME, Fike KE, Melvin EJ et al (1997) Development of a persistent ovarian follicle and associated elevated concentrations of 17β-estradiol preceding ovulation does not alter the pregnancy rate after embryo transfer in cattle. Theriogenology 47:1413–1421

    Article  PubMed  CAS  Google Scholar 

  • Wilson JW, Jones AL, Moore K et al (1993) Superovulation of cattle with a recombinant-DNA bovine follicle stimulating hormone. Anim Reprod Sci 33:71–82

    Article  CAS  Google Scholar 

  • Wiltbank MC (1997) How information of hormonal regulation of the ovary has improved understanding of timed breeding programs. In: Proceedings of the annual meeting society for theriogenology, Montreal, QC, pp 83–97

    Google Scholar 

  • Wock J, Lyle L, Hockett M (2008) Effect of gonadotropin-releasing hormone compared with estradiol-17β at the beginning of a superstimulation protocol on superovulatory response and embryo quality. Reprod Fertil Dev 20:228 (Abstract)

    Article  Google Scholar 

  • Wrathall AE, Simmons HA, Bowles DJ et al (2004) Biosecurity strategies for conserving valuable livestock genetic resources. Reprod Fertil Dev 16:103–112

    Article  PubMed  Google Scholar 

  • Wright JM (1981) Non-surgical embryo transfer in cattle embryo-recipient interactions. Theriogenology 15:43–56

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben J. Mapletoft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bó, G.A., Mapletoft, R.J. (2018). Embryo Transfer Technology in Cattle. In: Niemann, H., Wrenzycki, C. (eds) Animal Biotechnology 1. Springer, Cham. https://doi.org/10.1007/978-3-319-92327-7_5

Download citation

Publish with us

Policies and ethics