Skip to main content

Pediatric Renal Tumors

  • Chapter
  • First Online:
  • 761 Accesses

Abstract

Treatment of pediatric renal malignancies has seen dramatic advances in recent years. Modifications to surgical approach and the tailoring of chemoradiation protocols have led to increased survival, and now attention is focused on mitigating long-term effects of cancer-related treatment. Wilms tumor comprises the largest subset of pediatric renal tumors and as such will be the major focus of this chapter. The genetics and treatment of Wilms tumor will be reviewed in detail. Additionally, more infrequently encountered pediatric renal malignancies will also be explored.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ali AN, et al. A Surveillance, Epidemiology and End Results (SEER) program comparison of adult and pediatric Wilms tumor. Cancer. 2012;118(9):2541–51.

    Article  PubMed  Google Scholar 

  2. Breslow N, et al. Epidemiology of Wilms tumor. Med Pediatr Oncol. 1993;21(3):172–81.

    Article  CAS  PubMed  Google Scholar 

  3. Board, P.D.Q.P.T.E. Wilms Tumor and Other Childhood Kidney Tumors Treatment (PDQ(R)): Health Professional Version, in PDQ Cancer Information Summaries. Bethesda: National Cancer Institute (US); 2002.

    Google Scholar 

  4. Dome JS, et al. Treatment of anaplastic histology Wilms tumor: results from the fifth National Wilms Tumor Study. J Clin Oncol. 2006;24(15):2352–8.

    Google Scholar 

  5. van den Heuvel-Eibrink MM, et al. Characteristics and survival of 750 children diagnosed with a renal tumor in the first seven months of life: a collaborative study by the SIOP/GPOH/SFOP, NWTSG, and UKCCSG Wilms tumor study groups. Pediatr Blood Cancer. 2008;50(6):1130–4.

    Article  PubMed  Google Scholar 

  6. Dome JS, et al. Advances in Wilms tumor treatment and biology: progress through international collaboration. J Clin Oncol. 2015;33(27):2999–3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van den Heuvel-Eibrink MM, et al. Outcome of localised blastemal-type Wilms tumour patients treated according to intensified treatment in the SIOP WT 2001 protocol, a report of the SIOP Renal Tumour Study Group (SIOP-RTSG). Eur J Cancer. 2015;51(4):498–506.

    Article  PubMed  Google Scholar 

  8. Scott RH, et al. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet. 2006;43(9):705–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Breslow NE, et al. Characteristics and outcomes of children with the Wilms tumor-Aniridia syndrome: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2003;21(24):4579–85.

    Article  PubMed  Google Scholar 

  10. Pelletier J, et al. Germline mutations in the Wilms tumor suppressor gene are associated with abnormal urogenital development in Denys-Drash syndrome. Cell. 1991;67(2):437–47.

    Article  CAS  PubMed  Google Scholar 

  11. Rump P, Zeegers MP, van Essen AJ. Tumor risk in Beckwith-Wiedemann syndrome: a review and meta-analysis. Am J Med Genet A. 2005;136(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  12. Isidor B, et al. Wilms tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas. Eur J Hum Genet. 2013;21(7):784–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Muller EA, et al. Microdeletion 9q22.3 syndrome includes metopic craniosynostosis, hydrocephalus, macrosomia, and developmental delay. Am J Med Genet A. 2012;158a(2):391–9.

    Article  PubMed  CAS  Google Scholar 

  14. Choyke PL, et al. Screening for Wilms tumor in children with Beckwith-Wiedemann syndrome or idiopathic hemihypertrophy. Med Pediatr Oncol. 1999;32(3):196–200.

    Article  CAS  PubMed  Google Scholar 

  15. McNeil DE, et al. Screening for Wilms tumor and hepatoblastoma in children with Beckwith-Wiedemann syndromes: a cost-effective model. Med Pediatr Oncol. 2001;37(4):349–56.

    Article  CAS  PubMed  Google Scholar 

  16. Huff V. Wilms tumor genetics. Am J Med Genet. 1998;79(4):260–7.

    Article  CAS  PubMed  Google Scholar 

  17. Ozdemir DD, Hohenstein P. Wt1 in the kidney – a tale in mouse models. Pediatr Nephrol. 2014;29(4):687–93.

    Article  PubMed  Google Scholar 

  18. Knudson AG Jr, Strong LC. Mutation and cancer: a model for Wilms tumor of the kidney. J Natl Cancer Inst. 1972;48(2):313–24.

    Google Scholar 

  19. Charlton J, Pritchard-Jones K. WT1 mutation in childhood cancer. Methods Mol Biol. 2016;1467:1–14.

    Article  PubMed  Google Scholar 

  20. Barbosa AS, et al. The same mutation affecting the splicing of WT1 gene is present on Frasier syndrome patients with or without Wilms tumor. Hum Mutat. 1999;13(2):146–53.

    Article  CAS  PubMed  Google Scholar 

  21. Koesters R, et al. Mutational activation of the beta-catenin proto-oncogene is a common event in the development of Wilms tumors. Cancer Res. 1999;59(16):3880–2.

    Google Scholar 

  22. Maiti S, et al. Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res. 2000;60(22):6288–92.

    CAS  PubMed  Google Scholar 

  23. Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer. 2008;47(6):461–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rivera MN, et al. An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science. 2007;315(5812):642–5.

    Article  CAS  PubMed  Google Scholar 

  25. Jenkins ZA, et al. Germline mutations in WTX cause a sclerosing skeletal dysplasia but do not predispose to tumorigenesis. Nat Genet. 2009;41(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  26. Satoh Y, et al. Genetic and epigenetic alterations on the short arm of chromosome 11 are involved in a majority of sporadic Wilms tumours. Br J Cancer. 2006;95(4):541–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scott RH, et al. Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat Genet. 2008;40(11):1329–34.

    Article  CAS  PubMed  Google Scholar 

  28. Gratias EJ, et al. Association of chromosome 1q gain with inferior survival in favorable-histology Wilms tumor: a report from the Children’s Oncology Group. J Clin Oncol. 2016;34(26):3189–94.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Grundy PE, et al. Loss of heterozygosity for chromosomes 1p and 16q is an adverse prognostic factor in favorable-histology Wilms tumor: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2005;23(29):7312–21.

    Article  CAS  PubMed  Google Scholar 

  30. Green DM. The diagnosis and management of Wilms tumor. Pediatr Clin N Am. 1985;32(3):735–54.

    Article  CAS  PubMed  Google Scholar 

  31. Voute PA Jr, van der Meer J, Staugaard-Kloosterziel W. Plasma renin activity in Wilms tumour. Acta Endocrinol. 1971;67(1):197–202.

    Article  PubMed  Google Scholar 

  32. Callaghan MU, Wong TE, Federici AB. Treatment of acquired von Willebrand syndrome in childhood. Blood. 2013;122(12):2019–22.

    Article  CAS  PubMed  Google Scholar 

  33. Khanna G, et al. Evaluation of diagnostic performance of CT for detection of tumor thrombus in children with Wilms tumor: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2012;58(4):551–5.

    Article  PubMed  Google Scholar 

  34. Shamberger RC, et al. Surgery-related factors and local recurrence of Wilms tumor in National Wilms Tumor Study 4. Ann Surg. 1999;229(2):292–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Breslow N, et al. Prognosis for Wilms tumor patients with nonmetastatic disease at diagnosis – results of the second National Wilms Tumor Study. J Clin Oncol. 1985;3(4):521–31.

    Article  CAS  PubMed  Google Scholar 

  36. Popov SD, et al. Renal tumors in children aged 10-16 years: a report from the United Kingdom Children’s Cancer and Leukaemia Group. Pediatr Dev Pathol. 2011;14(3):189–93.

    Article  PubMed  Google Scholar 

  37. Bardeesy N, et al. Anaplastic Wilms tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nat Genet. 1994;7(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  38. Beckwith JB. Precursor lesions of Wilms tumor: clinical and biological implications. Med Pediatr Oncol. 1993;21(3):158–68.

    Article  CAS  PubMed  Google Scholar 

  39. Caiulo VA, et al. Nephrogenic rests: their frequency and their fate. J Pediatr Hematol Oncol. 2007;29(6):361–3.

    Article  PubMed  Google Scholar 

  40. Beckwith JB. Management of incidentally encountered nephrogenic rests. J Pediatr Hematol Oncol. 2007;29(6):353–4.

    Article  PubMed  Google Scholar 

  41. Beckwith JB. Nephrogenic rests and the pathogenesis of Wilms tumor: developmental and clinical considerations. Am J Med Genet. 1998;79(4):268–73.

    Article  CAS  PubMed  Google Scholar 

  42. Perlman EJ, et al. Hyperplastic perilobar nephroblastomatosis: long-term survival of 52 patients. Pediatr Blood Cancer. 2006;46(2):203–21.

    Article  PubMed  Google Scholar 

  43. Kieran K, et al. Lymph node involvement in Wilms tumor: results from National Wilms Tumor Studies 4 and 5. J Pediatr Surg. 2012;47(4):700–6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ritchey ML, et al. Fate of bilateral renal lesions missed on preoperative imaging: a report from the National Wilms Tumor Study Group. J Urol. 2005;174(4 Pt 2):1519–21. discussion 1521

    Article  PubMed  Google Scholar 

  45. Ritchey M, et al. Ureteral extension in Wilms tumor: a report from the National Wilms Tumor Study Group (NWTSG). J Pediatr Surg. 2008;43(9):1625–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shamberger RC, et al. Long-term outcomes for infants with very low risk Wilms tumor treated with surgery alone in National Wilms Tumor Study-5. Ann Surg. 2010;251(3):555–8.

    Article  PubMed  Google Scholar 

  47. Fernandez CV, et al. Clinical outcome and biological predictors of relapse after nephrectomy only for very low-risk Wilms tumor: a report from Children’s Oncology Group AREN0532. Ann Surg. 2017;265(4):835–40.

    Article  PubMed  Google Scholar 

  48. Ehrlich P, et al. Results of the first prospective multi-institutional treatment study in children with bilateral Wilms tumor (AREN0534): a report from the Children’s Oncology Group. Ann Surg. 2017;266(3):470–8.

    Article  PubMed  Google Scholar 

  49. Hamilton TE, et al. The management of synchronous bilateral Wilms tumor: a report from the National Wilms Tumor Study Group. Ann Surg. 2011;253(5):1004–10.

    Article  PubMed  Google Scholar 

  50. Lange JM, et al. Breast cancer in female survivors of Wilms tumor: a report from the national Wilms tumor late effects study. Cancer. 2014;120(23):3722–30.

    Article  PubMed  Google Scholar 

  51. Wong KF, et al. Risk of adverse health and social outcomes up to 50 years after Wilms tumor: the British Childhood Cancer Survivor Study. J Clin Oncol. 2016;34(15):1772–9.

    Article  CAS  PubMed  Google Scholar 

  52. Green DM, et al. Congestive heart failure after treatment for Wilms tumor: a report from the National Wilms Tumor Study group. J Clin Oncol. 2001;19(7):1926–34.

    Article  CAS  PubMed  Google Scholar 

  53. Termuhlen AM, et al. Twenty-five year follow-up of childhood Wilms tumor: a report from the Childhood Cancer Survivor Study. Pediatr Blood Cancer. 2011;57(7):1210–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Neu MA, et al. Prospective analysis of long-term renal function in survivors of childhood Wilms tumor. Pediatr Nephrol. 2017;32:1915.

    Article  PubMed  Google Scholar 

  55. Lipworth L, Tarone RE, McLaughlin JK. The epidemiology of renal cell carcinoma. J Urol. 2006;176(6 Pt 1):2353–8.

    Article  PubMed  Google Scholar 

  56. Silberstein J, et al. Renal cell carcinoma in the pediatric population: results from the California Cancer Registry. Pediatr Blood Cancer. 2009;52(2):237–41.

    Article  PubMed  Google Scholar 

  57. Akhavan A, et al. Renal cell carcinoma in children, adolescents and young adults: a National Cancer Database study. J Urol. 2015;193(4):1336–41.

    Article  PubMed  Google Scholar 

  58. Sausville JE, et al. Pediatric renal cell carcinoma. J Pediatr Urol. 2009;5(4):308–14.

    Article  PubMed  Google Scholar 

  59. Kane CJ, et al. Renal cell cancer stage migration: analysis of the National Cancer Data Base. Cancer. 2008;113(1):78–83.

    Article  PubMed  Google Scholar 

  60. Miniati D, et al. Imaging accuracy and incidence of Wilms and non-Wilms renal tumors in children. J Pediatr Surg. 2008;43(7):1301–7.

    Article  PubMed  Google Scholar 

  61. Lowe LH, et al. Pediatric renal masses: Wilms tumor and beyond. Radiographics. 2000;20(6):1585–603.

    Article  CAS  PubMed  Google Scholar 

  62. Bruder E, et al. Morphologic and molecular characterization of renal cell carcinoma in children and young adults. Am J Surg Pathol. 2004;28(9):1117–32.

    Article  PubMed  Google Scholar 

  63. Renshaw AA, et al. Renal cell carcinomas in children and young adults: increased incidence of papillary architecture and unique subtypes. Am J Surg Pathol. 1999;23(7):795–802.

    Article  CAS  PubMed  Google Scholar 

  64. Estrada CR, et al. Renal cell carcinoma: Children’s Hospital Boston experience. Urology. 2005;66(6):1296–300.

    Article  PubMed  Google Scholar 

  65. Argani P, Ladanyi M. The evolving story of renal translocation carcinomas. Am J Clin Pathol. 2006;126(3):332–4.

    Article  PubMed  Google Scholar 

  66. Geller JI, et al. Characterization of adolescent and pediatric renal cell carcinoma: a report from the Children’s Oncology Group study AREN03B2. Cancer. 2015;121(14):2457–64.

    Article  PubMed  Google Scholar 

  67. Argani P, Ladanyi M. Translocation carcinomas of the kidney. Clin Lab Med. 2005;25(2):363–78.

    Article  PubMed  Google Scholar 

  68. Sidhar SK, et al. The t(X;1)(p11.2;q21.2) translocation in papillary renal cell carcinoma fuses a novel gene PRCC to the TFE3 transcription factor gene. Hum Mol Genet. 1996;5(9):1333–8.

    Article  CAS  PubMed  Google Scholar 

  69. Argani P, et al. Primary renal neoplasms with the ASPL-TFE3 gene fusion of alveolar soft part sarcoma: a distinctive tumor entity previously included among renal cell carcinomas of children and adolescents. Am J Pathol. 2001;159(1):179–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Argani P, et al. Xp11 translocation renal cell carcinoma (RCC): extended immunohistochemical profile emphasizing novel RCC markers. Am J Surg Pathol. 2010;34(9):1295–303.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Argani P, et al. A distinctive pediatric renal neoplasm characterized by epithelioid morphology, basement membrane production, focal HMB45 immunoreactivity, and t(6;11)(p21.1;q12) chromosome translocation. Am J Pathol. 2001;158(6):2089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Geller JI, Dome JS. Local lymph node involvement does not predict poor outcome in pediatric renal cell carcinoma. Cancer. 2004;101(7):1575–83.

    Article  PubMed  Google Scholar 

  73. Indolfi P, et al. Local lymph node involvement in pediatric renal cell carcinoma: a report from the Italian TREP project. Pediatr Blood Cancer. 2008;51(4):475–8.

    Article  PubMed  Google Scholar 

  74. Cook A, et al. Pediatric renal cell carcinoma: single institution 25-year case series and initial experience with partial nephrectomy. J Urol. 2006;175(4):1456–60. discussion 1460

    Article  PubMed  Google Scholar 

  75. MacArthur CA, et al. Pediatric renal cell carcinoma: a complete response to recombinant interleukin-2 in a child with metastatic disease at diagnosis. Med Pediatr Oncol. 1994;23(4):365–71.

    Article  CAS  PubMed  Google Scholar 

  76. Bauer M, et al. A phase II trial of human recombinant interleukin-2 administered as a 4-day continuous infusion for children with refractory neuroblastoma, non-Hodgkin’s lymphoma, sarcoma, renal cell carcinoma, and malignant melanoma. A Children’s Cancer Group study. Cancer. 1995;75(12):2959–65.

    Article  CAS  PubMed  Google Scholar 

  77. De Pasquale MD, et al. Continuing response to subsequent treatment lines with tyrosine kinase inhibitors in an adolescent with metastatic renal cell carcinoma. J Pediatr Hematol Oncol. 2011;33(5):e176–9.

    Article  PubMed  Google Scholar 

  78. Wedekind MF, Ranalli M, Shah N. Clinical efficacy of cabozantinib in two pediatric patients with recurrent renal cell carcinoma. Pediatr Blood Cancer. 2017;64(11):1–4.

    Article  Google Scholar 

  79. Argani P, et al. Clear cell sarcoma of the kidney: a review of 351 cases from the National Wilms Tumor Study Group Pathology Center. Am J Surg Pathol. 2000;24(1):4–18.

    Article  CAS  PubMed  Google Scholar 

  80. Marsden HB, Lawler W. Bone metastasizing renal tumour of childhood. Histopathological and clinical review of 38 cases. Virchows Arch A Pathol Anat Histol. 1980;387(3):341–51.

    Article  CAS  PubMed  Google Scholar 

  81. Marsden HB, Lawler W, Kumar PM. Bone metastasizing renal tumor of childhood: morphological and clinical features, and differences from Wilms tumor. Cancer. 1978;42(4):1922–8.

    Article  CAS  PubMed  Google Scholar 

  82. Gooskens SL, et al. Treatment and outcome of patients with relapsed clear cell sarcoma of the kidney: a combined SIOP and AIEOP study. Br J Cancer. 2014;111(2):227–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Seibel NL, et al. Effect of duration of treatment on treatment outcome for patients with clear-cell sarcoma of the kidney: a report from the National Wilms Tumor Study Group. J Clin Oncol. 2004;22(3):468–73.

    Article  PubMed  Google Scholar 

  84. Astolfi A, et al. Whole transcriptome sequencing identifies BCOR internal tandem duplication as a common feature of clear cell sarcoma of the kidney. Oncotarget. 2015;6(38):40934–9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Ueno-Yokohata H, et al. Consistent in-frame internal tandem duplications of BCOR characterize clear cell sarcoma of the kidney. Nat Genet. 2015;47(8):861–3.

    Article  CAS  PubMed  Google Scholar 

  86. Wong MK, et al. Clear cell sarcomas of kidney are characterized by BCOR gene abnormalities including exon 15 internal tandem duplications and BCOR-CCNB3 gene fusion. Histopathology. 2018;72(2):320–9.

    Article  PubMed  Google Scholar 

  87. O'Meara E, et al. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J Pathol. 2012;227(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  88. Karlsson J, Valind A, Gisselsson D. BCOR internal tandem duplication and YWHAE-NUTM2B/E fusion are mutually exclusive events in clear cell sarcoma of the kidney. Genes Chromosomes Cancer. 2016;55(2):120–3.

    Article  CAS  PubMed  Google Scholar 

  89. Furtwangler R, et al. Clear cell sarcomas of the kidney registered on International Society of Pediatric Oncology (SIOP) 93-01 and SIOP 2001 protocols: a report of the SIOP Renal Tumour Study Group. Eur J Cancer. 2013;49(16):3497–506.

    Article  CAS  PubMed  Google Scholar 

  90. Amar AM, et al. Clinical presentation of rhabdoid tumors of the kidney. J Pediatr Hematol Oncol. 2001;23(2):105–8.

    Article  CAS  PubMed  Google Scholar 

  91. Tomlinson GE, et al. Rhabdoid tumor of the kidney in the National Wilms Tumor Study: age at diagnosis as a prognostic factor. J Clin Oncol. 2005;23(30):7641–5.

    Article  PubMed  Google Scholar 

  92. Eaton KW, et al. Spectrum of SMARCB1/INI1 mutations in familial and sporadic rhabdoid tumors. Pediatr Blood Cancer. 2011;56(1):7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Roberts CW, Biegel JA. The role of SMARCB1/INI1 in development of rhabdoid tumor. Cancer Biol Ther. 2009;8(5):412–6.

    Article  CAS  PubMed  Google Scholar 

  94. Furtwangler R, et al. Malignant rhabdoid tumor of the kidney: significantly improved response to pre-operative treatment intensified with doxorubicin. Cancer Genet. 2014;207(9):434–6.

    Article  PubMed  CAS  Google Scholar 

  95. van den Heuvel-Eibrink MM, et al. Malignant rhabdoid tumours of the kidney (MRTKs), registered on recent SIOP protocols from 1993 to 2005: a report of the SIOP renal tumour study group. Pediatr Blood Cancer. 2011;56(5):733–7.

    Article  PubMed  Google Scholar 

  96. England RJ, et al. Mesoblastic nephroma: a report of the United Kingdom Children’s Cancer and Leukaemia Group (CCLG). Pediatr Blood Cancer. 2011;56(5):744–8.

    Article  PubMed  Google Scholar 

  97. Gooskens SL, et al. Congenital mesoblastic nephroma 50 years after its recognition: a narrative review. Pediatr Blood Cancer. 2017;64(7):1–9.

    Article  Google Scholar 

  98. Furtwaengler R, et al. Mesoblastic nephroma – a report from the Gesellschaft fur Padiatrische Onkologie und Hamatologie (GPOH). Cancer. 2006;106(10):2275–83.

    Article  PubMed  Google Scholar 

  99. Joshi VV, Kasznica J, Walters TR. Atypical mesoblastic nephroma. Pathologic characterization of a potentially aggressive variant of conventional congenital mesoblastic nephroma. Arch Pathol Lab Med. 1986;110(2):100–6.

    CAS  PubMed  Google Scholar 

  100. Knezevich SR, et al. ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma. Cancer Res. 1998;58(22):5046–8.

    CAS  PubMed  Google Scholar 

  101. Granja MF, et al. Multilocular cystic nephroma: a systematic literature review of the radiologic and clinical findings. AJR Am J Roentgenol. 2015;205(6):1188–93.

    Article  PubMed  Google Scholar 

  102. Doros LA, et al. DICER1 mutations in childhood cystic nephroma and its relationship to DICER1-renal sarcoma. Mod Pathol. 2014;27(9):1267–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ewalt DH, et al. Renal lesion growth in children with tuberous sclerosis complex. J Urol. 1998;160(1):141–5.

    Article  CAS  PubMed  Google Scholar 

  104. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med. 2006;355(13):1345–56.

    Article  CAS  PubMed  Google Scholar 

  105. Warncke JC, et al. Pediatric renal angiomyolipomas in tuberous sclerosis complex. J Urol. 2017;197(2):500–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heather Di Carlo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasprenski, M., Di Carlo, H. (2019). Pediatric Renal Tumors. In: Gorin, M., Allaf, M. (eds) Diagnosis and Surgical Management of Renal Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-92309-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92309-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92308-6

  • Online ISBN: 978-3-319-92309-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics