Skip to main content

Abstract

Our understanding of molecular processes governing embryonic vascular development has largely come from in vivo and ex vivo studies using model organisms (laboratory mice, chick, and xenopus embryos) and in vitro studies using human umbilical vein endothelial cells (HUVECs) or human embryonic stem cell lines (hESCs). ESCs have the capability of differentiating into any of the three primary germ layers (endoderm, mesoderm, or ectoderm). These investigations have been foundational to concepts governing our understanding of vascular anomaly development and treatment. At this time it is being determined how much animal and in vitro cellular biology is directly relevant to clinical care of vascular anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choi I, Lee S, Kyoung Chung H, Suk Lee Y, Eui Kim K, Choi D, Park EK, Yang D, Ecoiffier T, Monahan J, Chen W, Aguilar B, Lee HN, Yoo J, Koh CJ, Chen L, Wong AK, Hong YK. 9-cis retinoic acid promotes lymphangiogenesis and enhances lymphatic vessel regeneration: therapeutic implications of 9-cis retinoic acid for secondary lymphedema. Circulation. 2012;125(7):872–82.

    Article  CAS  Google Scholar 

  2. Deng Y, Atri D, Eichmann A, Simons M. Endothelial ERK signaling controls lymphatic fate specification. J Clin Invest. 2013;123(3):1202–15.

    Article  CAS  Google Scholar 

  3. **Ferguson JE 3rd, Kelley RW, Patterson C. Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arterioscler Thromb Vasc Biol. 2005;25(11):2246–54.

    Article  CAS  Google Scholar 

  4. Goldie LC, Nix MK, Hirschi KK. Embryonic vasculogenesis and hematopoietic specification. Organogenesis. 2008;4(4):257–63.

    Article  Google Scholar 

  5. Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL, Oliver G. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev. 2008;22(23):3282–91.

    Article  CAS  Google Scholar 

  6. Kadohama T, Nishimura K, Hoshino Y, Sasajima T, Sumpio BE. Effects of different types of fluid shear stress on endothelial cell proliferation and survival. J Cell Physiol. 2007;212(1):244–51.

    Article  CAS  Google Scholar 

  7. Lai L, Bohnsack BL, Niederreither K, Hirschi KK. Retinoic acid regulates endothelial cell proliferation during vasculogenesis. Development (Cambridge, England). 2003;130(26):6465–74.

    Article  CAS  Google Scholar 

  8. Lee HJ, Koh GY. Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells. Biochem Biophys Res Commun. 2003;304(2):399–404.

    Article  CAS  Google Scholar 

  9. **Marcelo KL, Goldie LC, Hirschi KK. Regulation of endothelial cell differentiation and specification. Circ Res. 2013;112(9):1272–87.

    Article  CAS  Google Scholar 

  10. Marino D, Dabouras V, Brandli AW, Detmar M. A role for all-trans-retinoic acid in the early steps of lymphatic vasculature development. J Vasc Res. 2011;48(3):236–51.

    Article  CAS  Google Scholar 

  11. Palis J, Yoder MC. Yolk-sac hematopoiesis: the first blood cells of mouse and man. Exp Hematol. 2001;29(8):927–36.

    Article  CAS  Google Scholar 

  12. Schmidt A, Brixius K, Bloch W. Endothelial precursor cell migration during vasculogenesis. Circ Res. 2007;101(2):125–36.

    Article  CAS  Google Scholar 

  13. ***Simons M, Eichmann A. Physiology. Lymphatics are in my veins. Science (New York, NY). 2013;341(6146):622–4.

    Article  CAS  Google Scholar 

  14. Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ, Samokhvalov IM, Oliver G. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 2007;21(19):2422–32.

    Article  CAS  Google Scholar 

  15. ***Yang Y, Oliver G. Development of the mammalian lymphatic vasculature. J Clin Invest. 2014;124(3):888–97.

    Article  CAS  Google Scholar 

Download references

To assist the reader in gaining familiarity with available evidence, the following rating system has been used to indicate key references for each chapter’s content:

***: Critical material. Anyone dealing with this condition should be familiar with this reference.

**: Useful material. Important information that is valuable in in clinical or scientific practice related to this condition.

*: Optional material. For readers with a strong interest in the chapter content or a desire to study it in greater depth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan A. Perkins DO .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganti, S.N., Majesky, M.W., Perkins, J.A. (2018). Developmental Vascular Biology. In: Perkins, J., Balakrishnan, K. (eds) Evidence-Based Management of Head and Neck Vascular Anomalies. Springer, Cham. https://doi.org/10.1007/978-3-319-92306-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92306-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92305-5

  • Online ISBN: 978-3-319-92306-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics