Skip to main content

Evidence-Based Medicine: Key Definitions and Concepts

  • Chapter
  • First Online:
Evidence-Based Management of Head and Neck Vascular Anomalies

Abstract

The judicious practice of evidence-based medicine improves the quality of care provided to patients as well as patient outcomes. It involves the systematic search and evaluation of literature and then applying these findings to clinical decision-making. Specifically, evidence-based medicine encompasses five steps: (1) formation of a specific clinical question, (2) systematic search of the literature for available evidence, (3) appraisal of evidence, (4) interpretation of findings in the context of the individual patient and application to clinical decision-making, and (5) regular evaluation of own performance. An effective search requires sufficient knowledge of different categories of evidence and where they can be accessed. Once the studies are obtained, they are critically appraised. This step requires an understanding of study designs, associated biases, and the resulting strength of evidence. For clinicians who may not have time to perform a systematic search of the literature, they can target their search to focus on higher levels of evidence. Alternatively, they can begin their search with pre-appraised literature rather than individually published studies. Ultimately, a commitment to evidence-based medicine ensures that every clinical decision will be made based on the best available evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evidence-Based Medicine Working Group. Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA: J Am Med Assoc. 1992;268(17):2420–5.

    Article  Google Scholar 

  2. Rosenberg W, Donald A. Evidence based medicine: an approach to clinical problem-solving. BMJ. 1995;310(6987):1122–6.

    Article  CAS  Google Scholar 

  3. ***Shin JJ, Randolph GW, Rauch SD. Evidence-based medicine in otolaryngology, part 1: the multiple faces of evidence-based medicine. Otolaryngol – Head Neck Surg: Off J Am Acad Otolaryngol-Head Neck Surg. 2010;142(5):637–46. https://doi.org/10.1016/j.otohns.2010.01.018.

    Article  Google Scholar 

  4. Watts DD, Hanfling D, Waller MA, Gilmore C, Fakhry SM, Trask AL. An evaluation of the use of guidelines in prehospital management of brain injury. Prehosp Emerg Care. 2004;8(3):254–61.

    PubMed  Google Scholar 

  5. Barr J, Hecht M, Flavin KE, Khorana A, Gould MK. Outcomes in critically ill patients before and after the implementation of an evidence-based nutritional management protocol. Chest. 2004;125(4):1446–57.

    Article  Google Scholar 

  6. Briffa T, Hickling S, Knuiman M, Hobbs M, Hung J, Sanfilippo FM, et al. Long term survival after evidence based treatment of acute myocardial infarction and revascularisation: follow-up of population based Perth MONICA cohort, 1984–2005. BMJ. 2009;338:b36. https://doi.org/10.1136/bmj.b36.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rasmussen JN, Chong A, Alter DA. Relationship between adherence to evidence-based pharmacotherapy and long-term mortality after acute myocardial infarction. JAMA: J Am Med Assoc. 2007;297(2):177–86. https://doi.org/10.1001/jama.297.2.177.

    Article  CAS  Google Scholar 

  8. Shorr AF, Micek ST, Jackson WL Jr, Kollef MH. Economic implications of an evidence-based sepsis protocol: can we improve outcomes and lower costs? Crit Care Med. 2007;35(5):1257–62. https://doi.org/10.1097/01.CCM.0000261886.65063.CC.

    Article  PubMed  Google Scholar 

  9. Suojaranta-Ylinen RT, Roine RO, Vento AE, Niskanen MM, Salmenpera MT. Improved neurologic outcome after implementing evidence-based guidelines for cardiac surgery. J Cardiothorac Vasc Anesth. 2007;21(4):529–34. https://doi.org/10.1053/j.jvca.2006.12.019.

    Article  PubMed  Google Scholar 

  10. Sackett DL. Evidence-based medicine. Semin Perinatol. 1997;21(1):3–5.

    Article  CAS  Google Scholar 

  11. Masic I, Miokovic M, Muhamedagic B. Evidence based medicine – new approaches and challenges. Acta Inform Med. 2008;16(4):219–25. https://doi.org/10.5455/aim.2008.16.219-225.

    Article  PubMed  PubMed Central  Google Scholar 

  12. U.S. National Library of Medicine. Medline, PubMed, and PMC (PubMed Central): how are they different? 2016. https://www.nlm.nih.gov/pubs/factsheets/dif_med_pub.html. Accessed 11 Dec 2016.

  13. Elsevier. Embase coverage and content 2016. https://www.elsevier.com/solutions/embase-biomedical-research/embase-coverage-and-content. Accessed 11 Dec 2016.

  14. Brazier H, Begley CM. Selecting a database for literature searches in nursing: MEDLINE or CINAHL? J Adv Nurs. 1996;24(4):868–75.

    Article  CAS  Google Scholar 

  15. Bahaadinbeigy K, Yogesan K, Wootton R. MEDLINE versus EMBASE and CINAHL for telemedicine searches. Telemed J E Health. 2010;16(8):916–9. https://doi.org/10.1089/tmj.2010.0046.

    Article  PubMed  Google Scholar 

  16. EBSCO Industries. CINAHL complete. 2016. https://www.ebscohost.com/nursing/products/cinahl-databases/cinahl-complete. Accessed 11 Dec 2016.

  17. Burnham J, Shearer B. Comparison of CINAHL, EMBASE, and MEDLINE databases for the nurse researcher. Med Ref Serv Q. 1993;12(3):45–57. https://doi.org/10.1300/J115V12N04_05.

    Article  CAS  PubMed  Google Scholar 

  18. Sampson M, Barrowman NJ, Moher D, Klassen TP, Pham B, Platt R, et al. Should meta-analysts search Embase in addition to Medline? J Clin Epidemiol. 2003;56(10):943–55.

    Article  Google Scholar 

  19. Wilkins T, Gillies RA, Davies K. EMBASE versus MEDLINE for family medicine searches: can MEDLINE searches find the forest or a tree? Can Fam Physician. 2005;51:848–9.

    PubMed  Google Scholar 

  20. Subirana M, Sola I, Garcia JM, Gich I, Urrutia G. A nursing qualitative systematic review required MEDLINE and CINAHL for study identification. J Clin Epidemiol. 2005;58(1):20–5. https://doi.org/10.1016/j.jclinepi.2004.06.001.

    Article  PubMed  Google Scholar 

  21. Cochrane Library. Cochrane central register of controlled trials (CENTRAL). 2016. http://www.cochranelibrary.com/about/central-landing-page.html. Accessed 11 Dec 2016.

  22. U.S. National Library of Medicine. Health services research (HSR) PubMed queries. 2016. https://www.nlm.nih.gov/nichsr/hedges/search.html. Accessed 11 Dec 2016.

  23. Haynes RB. Of studies, summaries, synopses, and systems: the “4S” evolution of services for finding current best evidence. Evid Based Ment Health. 2001;4(2):37–9.

    Article  CAS  Google Scholar 

  24. Sedgwick P. Bias in observational study designs: prospective cohort studies. BMJ. 2014;349:g7731. https://doi.org/10.1136/bmj.g7731.

    Article  PubMed  Google Scholar 

  25. Gugiu PC, Gugiu MR. A critical appraisal of standard guidelines for grading levels of evidence. Eval Health Prof. 2010;33(3):233–55. https://doi.org/10.1177/0163278710373980.

    Article  PubMed  Google Scholar 

  26. Brighton B, Bhandari M, Tornetta P 3rd, Felson DT. Hierarchy of evidence: from case reports to randomized controlled trials. Clin Orthop Relat Res. 2003;413:19–24. https://doi.org/10.1097/01.blo.0000079323.41006.12.

    Article  Google Scholar 

  27. Centre for Evidence-Based Medicine. Study designs. 2016. http://www.cebm.net/study-designs/. Accessed 12 Dec 2016.

  28. Dziura JD, Post LA, Zhao Q, Fu Z, Peduzzi P. Strategies for dealing with missing data in clinical trials: from design to analysis. Yale J Biol Med. 2013;86(3):343–58.

    PubMed  PubMed Central  Google Scholar 

  29. Evans SR. Clinical trial structures. J Exp Stroke Transl Med. 2010;3(1):8–18.

    Article  Google Scholar 

  30. Higgins JPT, Green S. Assessment of study quality. Cochrane handbook for systematic reviews of interventions version 5.1.0. Available from http://www.cochrane-handbook.org/ 2011.

  31. Viera AJ, Bangdiwala SI. Eliminating bias in randomized controlled trials: importance of allocation concealment and masking. Fam Med. 2007;39(2):132–7.

    PubMed  Google Scholar 

  32. Wallace DK. Evidence-based medicine and levels of evidence. Am Orthopt J. 2010;60:2–5.

    Article  Google Scholar 

  33. Evans SR. Fundamentals of clinical trial design. J Exp Stroke Transl Med. 2010;3(1):19–27.

    Article  Google Scholar 

  34. Lachin JM. Statistical considerations in the intent-to-treat principle. Control Clin Trials. 2000;21(3):167–89.

    Article  CAS  Google Scholar 

  35. Akobeng AK. Understanding randomised controlled trials. Arch Dis Child. 2005;90(8):840–4. https://doi.org/10.1136/adc.2004.058222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jonas WB. The evidence house: how to build an inclusive base for complementary medicine. West J Med. 2001;175(2):79–80.

    Article  CAS  Google Scholar 

  37. Petrisor BA, Keating J, Schemitsch E. Grading the evidence: levels of evidence and grades of recommendation. Injury. 2006;37(4):321–7. https://doi.org/10.1016/j.injury.2006.02.001.

    Article  CAS  PubMed  Google Scholar 

  38. Benson K, Hartz AJ. A comparison of observational studies and randomized, controlled trials. Am J Ophthalmol. 2000;130(5):688.

    Article  CAS  Google Scholar 

  39. Concato J, Shah N, Horwitz RI. Randomized, controlled trials, observational studies, and the hierarchy of research designs. N Engl J Med. 2000;342(25):1887–92. https://doi.org/10.1056/NEJM200006223422507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rothman KJ, Greenland S, Lash TL. Cohort studies. Modern epidemiology. 3rd ed. Philadelphia: Lippincott, Williams & Wilkins; 2012.

    Google Scholar 

  41. Song JW, Chung KC. Observational studies: cohort and case-control studies. Plast Reconstr Surg. 2010;126(6):2234–42. https://doi.org/10.1097/PRS.0b013e3181f44abc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Howe CJ, Cole SR, Lau B, Napravnik S, Eron JJ Jr. Selection bias due to loss to follow up in cohort studies. Epidemiology. 2016;27(1):91–7. https://doi.org/10.1097/EDE.0000000000000409.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Viswanathan MBN, Dryden DM, Hartling L. Assessing risk of bias and confounding in observational studies of interventions or exposures: further development of the RTI item Bank. Methods research report. Rockville: Agency for Healthcare Research and Quality; 2013. Report No.: 13-EHC106-EF

    Google Scholar 

  44. Rothman KJ, Greenland S, Lash TL. Case-control studies. Modern epidemiology. 3rd ed. Philadelphia: Lippincott, Williams & Wilkins; 2012.

    Google Scholar 

  45. Hill G, Connelly J, Hebert R, Lindsay J, Millar W. Neyman’s bias re-visited. J Clin Epidemiol. 2003;56(4):293–6.

    Article  Google Scholar 

  46. Sackett DL. Bias in analytic research. J Chronic Dis. 1979;32(1–2):51–63.

    Article  CAS  Google Scholar 

  47. Sedgwick P. Bias in observational study designs: case-control studies. BMJ. 2015;350:h560. https://doi.org/10.1136/bmj.h560.

    Article  PubMed  Google Scholar 

  48. Sedgwick P. Bias in observational study designs: cross sectional studies. BMJ. 2015;350:h1286. https://doi.org/10.1136/bmj.h1286.

    Article  PubMed  Google Scholar 

  49. Levin KA. Study design III: cross-sectional studies. Evid Based Dent. 2006;7(1):24–5. https://doi.org/10.1038/sj.ebd.6400375.

    Article  PubMed  Google Scholar 

  50. Shin JJ, Stinnett S, Page J, Randolph GW. Evidence-based medicine in otolaryngology, part 3: everyday probabilities: diagnostic tests with binary results. Otolaryngology – Head Neck Surg: Off J Am Acad Otolaryngol-Head Neck Surg. 2012;147(2):185–92. https://doi.org/10.1177/0194599812447750.

    Article  Google Scholar 

  51. Shin JJ, Stinnett SS, Randolph GW. Evidence-based medicine in otolaryngology part 4: everyday probabilities – nonbinary diagnostic tests. Otolaryngol – Head Neck Surg: Off J Am Acad Otolaryngol-Head Neck Surg. 2013;149(2):179–86. https://doi.org/10.1177/0194599813491070.

    Article  Google Scholar 

  52. Duffy SW, Nagtegaal ID, Wallis M, Cafferty FH, Houssami N, Warwick J, et al. Correcting for lead time and length bias in estimating the effect of screen detection on cancer survival. Am J Epidemiol. 2008;168(1):98–104. https://doi.org/10.1093/aje/kwn120.

    Article  PubMed  Google Scholar 

  53. Tanner EJ, Chi DS, Eisenhauer EL, Diaz-Montes TP, Santillan A, Bristow RE. Surveillance for the detection of recurrent ovarian cancer: survival impact or lead-time bias? Gynecol Oncol. 2010;117(2):336–40. https://doi.org/10.1016/j.ygyno.2010.01.014.

    Article  PubMed  Google Scholar 

  54. Carey TS, Boden SD. A critical guide to case series reports. Spine (Phila Pa 1976). 2003;28(15):1631–4. https://doi.org/10.1097/01.BRS.0000083174.84050.E5.

    Article  Google Scholar 

  55. Kooistra B, Dijkman B, Einhorn TA, Bhandari M. How to design a good case series. J Bone Joint Surg Am. 2009;91(Suppl 3):21–6. https://doi.org/10.2106/JBJS.H.01573.

    Article  PubMed  Google Scholar 

  56. Cook DJ, Mulrow CD, Haynes RB. Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med. 1997;126(5):376–80.

    Article  CAS  Google Scholar 

  57. Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions. 2011. http://handbook.cochrane.org/. Accessed 17 Dec 2016.

  58. Umscheid CAA. Primer on performing systematic reviews and meta-analyses. Clin Infect Dis: Off Publ Infect Dis Soc Am. 2013;57(5):725–34. https://doi.org/10.1093/cid/cit333.

    Article  Google Scholar 

  59. Akobeng AK. Understanding systematic reviews and meta-analysis. Arch Dis Child. 2005;90(8):845–8. https://doi.org/10.1136/adc.2004.058230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. *National Institutes of Health. Quality assessment of systematic reviews and meta-analyses. 2014. https://www.nhlbi.nih.gov/health-pro/guidelines/in-develop/cardiovascular-risk-reduction/tools/sr_ma. Accessed 17 Dec 2016.

  61. ***Murad MH, Montori VM, Ioannidis JP, Jaeschke R, Devereaux PJ, Prasad K, et al. How to read a systematic review and meta-analysis and apply the results to patient care: users’ guides to the medical literature. JAMA. 2014;312(2):171–9. https://doi.org/10.1001/jama.2014.5559.

    Article  CAS  PubMed  Google Scholar 

  62. Institute of Medicine. Clinical practice guidelines we can trust. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  63. Rosenfeld RM, Shin JJ, Schwartz SR, Coggins R, Gagnon L, Hackell JM, et al. Clinical practice guideline: otitis media with effusion (update). Otolaryngol – Head Neck Surg: Off J Am Acad Otolaryngol-Head Neck Surg. 2016;154(1 Suppl):S1–S41. https://doi.org/10.1177/0194599815623467.

    Article  Google Scholar 

  64. Rosenfeld RM, Piccirillo JF, Chandrasekhar SS, Brook I, Ashok Kumar K, Kramper M, et al. Clinical practice guideline (update): adult sinusitis. Otolaryngol – Head Neck Surg: Off J Am Acad Otolaryngol-Head Neck Surg. 2015;152(2 Suppl):S1–S39. https://doi.org/10.1177/0194599815572097.

    Article  Google Scholar 

  65. Tunkel DE, Bauer CA, Sun GH, Rosenfeld RM, Chandrasekhar SS, Cunningham ER Jr, et al. Clinical practice guideline: tinnitus. Otolaryngol – Head Neck Surg: Off J Am Acad Otolaryngol-Head Neck Surg. 2014;151(2 Suppl):S1–S40. https://doi.org/10.1177/0194599814545325.

    Article  Google Scholar 

  66. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133. https://doi.org/10.1089/thy.2015.0020.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Schilder AG, Bhutta MF, Butler CC, Holy C, Levine LH, Kvaerner KJ, et al. Eustachian tube dysfunction: consensus statement on definition, types, clinical presentation and diagnosis. Clin Otolaryngol: Off J ENT-UK; Off J Neth Soc Oto-Rhino-Laryngol Cervico-Facial Surg. 2015;40(5):407–11. https://doi.org/10.1111/coa.12475.

    Article  CAS  Google Scholar 

  68. Orlandi RR, Kingdom TT, Hwang PH, Smith TL, Alt JA, Baroody FM, et al. International consensus statement on allergy and rhinology: rhinosinusitis. Int Forum Allergy Rhinol. 2016;6(Suppl 1):S22–209. https://doi.org/10.1002/alr.21695.

    Article  PubMed  Google Scholar 

  69. Olivo SA, Macedo LG, Gadotti IC, Fuentes J, Stanton T, Magee DJ. Scales to assess the quality of randomized controlled trials: a systematic review. Phys Ther. 2008;88(2):156–75. https://doi.org/10.2522/ptj.20070147.

    Article  PubMed  Google Scholar 

  70. Sindhu F, Carpenter L, Seers K. Development of a tool to rate the quality assessment of randomized controlled trials using a Delphi technique. J Adv Nurs. 1997;25(6):1262–8.

    Article  CAS  Google Scholar 

  71. Verhagen AP, de Vet HC, de Bie RA, Kessels AG, Boers M, Bouter LM, et al. The Delphi list: a criteria list for quality assessment of randomized clinical trials for conducting systematic reviews developed by Delphi consensus. J Clin Epidemiol. 1998;51(12):1235–41.

    Article  CAS  Google Scholar 

  72. Bizzini M, Childs JD, Piva SR, Delitto A. Systematic review of the quality of randomized controlled trials for patellofemoral pain syndrome. J Orthop Sports Phys Ther. 2003;33(1):4–20. https://doi.org/10.2519/jospt.2003.33.7.F4.

    Article  PubMed  Google Scholar 

  73. Yates SL, Morley S, Eccleston C, de C Williams AC. A scale for rating the quality of psychological trials for pain. Pain. 2005;117(3):314–25. https://doi.org/10.1016/j.pain.2005.06.018.

    Article  PubMed  Google Scholar 

  74. Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials. 1996;17(1):1–12.

    Article  CAS  Google Scholar 

  75. Sanderson S, Tatt ID, Higgins JP. Tools for assessing quality and susceptibility to bias in observational studies in epidemiology: a systematic review and annotated bibliography. Int J Epidemiol. 2007;36(3):666–76. https://doi.org/10.1093/ije/dym018.

    Article  PubMed  Google Scholar 

  76. Whiting P, Savovic J, Higgins JP, Caldwell DM, Reeves BC, Shea B, et al. ROBIS: a new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol. 2016;69:225–34. https://doi.org/10.1016/j.jclinepi.2015.06.005.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Shea BJ, Bouter LM, Peterson J, Boers M, Andersson N, Ortiz Z, et al. External validation of a measurement tool to assess systematic reviews (AMSTAR). PLoS One. 2007;2(12):e1350. https://doi.org/10.1371/journal.pone.0001350.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Higgins JP, Lane PW, Anagnostelis B, Anzures-Cabrera J, Baker NF, Cappelleri JC, et al. A tool to assess the quality of a meta-analysis. Res Synth Methods. 2013;4(4):351–66. https://doi.org/10.1002/jrsm.1092.

    Article  PubMed  Google Scholar 

  79. Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ: Can Med Assoc J = J l’Assoc Med Can. 2010;182(18):E839–42. https://doi.org/10.1503/cmaj.090449.

    Article  Google Scholar 

  80. Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, et al. Grading quality of evidence and strength of recommendations. BMJ. 2004;328(7454):1490. https://doi.org/10.1136/bmj.328.7454.1490.

    Article  PubMed  Google Scholar 

  81. Juni P, Witschi A, Bloch R, Egger M. The hazards of scoring the quality of clinical trials for meta-analysis. JAMA: J Am Med Assoc. 1999;282(11):1054–60.

    Article  CAS  Google Scholar 

  82. Moher D, Cook DJ, Eastwood S, Olkin I, Rennie D, Stroup DF. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Qual Rep Meta-Anal Lancet. 1999;354(9193):1896–900.

    CAS  Google Scholar 

  83. **Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34. https://doi.org/10.1016/j.jclinepi.2009.06.006.

    Article  PubMed  Google Scholar 

  84. Begg C, Cho M, Eastwood S, Horton R, Moher D, Olkin I, et al. Improving the quality of reporting of randomized controlled trials. The CONSORT statement. JAMA: J Am Med Assoc. 1996;276(8):637–9.

    Article  CAS  Google Scholar 

  85. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med. 2003;138(1):W1–12.

    Article  Google Scholar 

  86. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA: J Am Med Assoc. 2000;283(15):2008–12.

    Article  CAS  Google Scholar 

  87. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495–9. https://doi.org/10.1016/j.ijsu.2014.07.013.

    Article  Google Scholar 

  88. ***Centre for Evidence-Based Medicine. Oxford centre for evidence-based medicine – levels of evidence. 2009. http://www.cebm.net/oxford-centre-evidence-based-medicine-levels-evidence-march-2009/. Accessed 18 Dec 2016.

  89. **Haynes RB. Of studies, syntheses, synopses, summaries, and systems: the “5S” evolution of information services for evidence-based healthcare decisions. Evid Based Med. 2006;11(6):162–4. https://doi.org/10.1136/ebm.11.6.162-a.

    Article  PubMed  Google Scholar 

  90. ***Dicenso A, Bayley L, Haynes RB. Accessing pre-appraised evidence: fine-tuning the 5S model into a 6S model. Evid Based Nurs. 2009;12(4):99–101. https://doi.org/10.1136/ebn.12.4.99-b.

    Article  PubMed  Google Scholar 

Download references

To assist the reader in gaining familiarity with available evidence, the following rating system has been used to indicate key references for each chapter’s content:

***: Critical material. Anyone dealing with this condition should be familiar with this reference.

**: Useful material. Important information that is valuable in in clinical or scientific practice related to this condition.

*: Optional material. For readers with a strong interest in the chapter content or a desire to study it in greater depth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Shin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carrie Liu, C., Shin, J. (2018). Evidence-Based Medicine: Key Definitions and Concepts. In: Perkins, J., Balakrishnan, K. (eds) Evidence-Based Management of Head and Neck Vascular Anomalies. Springer, Cham. https://doi.org/10.1007/978-3-319-92306-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92306-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92305-5

  • Online ISBN: 978-3-319-92306-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics