Advertisement

Form Finding of Nexorades Using the Translations Method

  • Tristan GobinEmail author
  • Romain Mesnil
  • Cyril Douthe
  • Pierre Margerit
  • Nicolas Ducoulombier
  • Leo Demont
  • Hocine Delmi
  • Jean-François Caron
Conference paper

Abstract

The aim of this paper is to discuss the dialectic form-finding of a complex timber structure based on an innovative structural system: shell-nexorade hybrids. Nexorades, also known as reciprocal frames are elegant structures that suffer from a relatively poor structural behavior due to in-plane shear and bending of the members. Introducing plates as bracing elements significantly improves their performance, but increases the manufacturing complexity and sets high tolerance constraints. We present the fabrication and assembly of a 50 m2 timber pavilion with 6-axis robotized milling. The use of a mobile robot and fixed machining stations is explored to allow for maximal flexibility of iterations between design and fabrication.

Keywords

Complex timber structure Non-standard structure Reciprocal frame Nexorade Free-form architecture Robotic construction 

References

  1. 1.
    Baverel, O.: Nexorades: a family of interwoven space structures. Ph.D. thesis, University of Surrey (2000)Google Scholar
  2. 2.
    Bock T.-A.: Robot-oriented design. In: Proceedings of the 5th International Symposium on Robotics in Construction, ISRC, pp. 135–144. Tokyo (1988)Google Scholar
  3. 3.
    Brocato, M.: Reciprocal frames: Kinematical determinacy. Int. J. Space Struct. 26(4), 343–358 (2011)CrossRefGoogle Scholar
  4. 4.
    Harris, R.: Engineered timber structures in the UK. In: 3rd Forum International Bois Construction, pp. 1--12, Beaune (2013) Google Scholar
  5. 5.
    Mesnil, R., Douthe, C., Baverel, O., Léger, B.: Linear buckling of quadrangular and kagome gridshells: a comparative assessment. Eng. Struct. 132(1), 337–348 (2017)CrossRefGoogle Scholar
  6. 6.
    Mesnil, R., Douthe, C., Baverel, O., Léger, B.: Marionette Meshes: covering free-form architecture with planar quadrilateral facets. Int. J. Space Struct. 32(3–4), 184–198 (2017)CrossRefGoogle Scholar
  7. 7.
    Mesnil, R., Douthe C., Baverel O., and Gobin T.: Form-finding of reciprocal frames with the method of translations. Automation in Construction, accepted (2018)Google Scholar
  8. 8.
    Poranne, R., Chen, R., Gotsman, C.: On linear spaces of polyhedral meshes. IEEE Trans. Visual Comput. Graphics 21(5), 652–662 (2015)CrossRefGoogle Scholar
  9. 9.
    Preisinger, C.: Linking structure and parametric geometry. Architectural Des. 83(2), 110–113 (2013)Google Scholar
  10. 10.
    Robeller, C., Weinand, Y.: Fabrication-aware design of timber folded plate shells with double through tenon joints. In: Reinhardt, D., Saunders, R., Burry, J. (eds.) Robotic Fabrication in Architecture, Art and Design 2016, pp. 166–177. Springer International Publishing, Switzerland (2016)Google Scholar
  11. 11.
    Scheurer, F.: Materialising complexity. Architectural Des. 80(4), 86–93 (2010)Google Scholar
  12. 12.
    Scheurer, F., Stehling, H., Tschümperlin, F., Antemann, M.: Design for assembly—digital prefabrication of complex timber structures. In: Proceedings of the International Association for Shell and Spatial Structures Symposium (IASS): Beyond the Limits of Man, pp. 1–7. Wroclaw (2013)Google Scholar
  13. 13.
    Schwartz, T.: HAL. In: Brell-Çokcan, S., Braumann, J. (eds.) ROB|ARCH 2012: Robotic Fabrication in Architecture, Art and Design, pp. 92–101. Springer, Vienna (2013) Google Scholar
  14. 14.
    Willmann, J., Knauss, M., Bonwetsch, T., Apolinarska, A.A., Gramazio, F., Kohler, M.: Robotic timber construction—expanding additive fabrication to new dimensions. Autom. Constr. 61, 16–23 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tristan Gobin
    • 1
    • 2
    • 3
    Email author
  • Romain Mesnil
    • 1
  • Cyril Douthe
    • 1
  • Pierre Margerit
    • 1
  • Nicolas Ducoulombier
    • 1
  • Leo Demont
    • 1
  • Hocine Delmi
    • 1
  • Jean-François Caron
    • 1
  1. 1.Laboratoire Navier, UMR 8205, École des Ponts, IFSTTAR, UPEChamps-sur-MarneFrance
  2. 2.Université Paris-Est, Ecole Nationale Supérieure D’architecture de Paris-Malaquais, Laboratoire Géométrie Structure ArchitectureParisFrance
  3. 3.HAL Robotics LtdLondonUK

Personalised recommendations