Towards the Development of Fabrication Machine Species for Filament Materials

Conference paper


The research presented in this paper explores the concept of deploying collaborative heterogeneous robot systems where machines are working together towards a common fabrication goal. Augmenting or replacing existing industrial-robot fabrication processes with task-specific architectural construction machines has the potential to expand the design space of digital fabrication methods beyond the limitations of previously existing strategies. The proposed system implies the development of a library of hardware solutions as well as a digital control tool to enable successful execution of fabrication tasks.

This research is focusing on heterogeneous mobile robotic fabrication strategies specific to filament materials. Deploying smaller robots for manipulation of lightweight thread-like materials allows building significantly larger structures. Multiple task-specific machines developed in this research are designed to carry, manipulate, anchor and pass filament materials in an on-site architectural environment of interior space. This paper presents the current state of the catalogue of robot species developed in this research as well as the experiments and demonstrators performed to evaluate them. Ultimately this research aims to create a larger toolbox of hardware and software tools and methods for heterogeneous teams of custom single-task fabrication and construction robots.


Heterogeneous robot teams Mobile robots Filament material Task-Specific robotics Robotic ecosystems 


  1. 1.
    Cousineau, L., Miura, N.: Construction Robots: The Search for New Building Technology in Japan. American Society of Civil Engineers (ASCE), Reston, VA (1998)Google Scholar
  2. 2.
    Bock, T., Linner, T.: Construction Robots: Elementary Technologies and Single-Task Construction Robots, vol. 3. Cambridge University Press, New York (2016)CrossRefGoogle Scholar
  3. 3.
    Phillips, S.: Plastics. In: Colomina, B., Brennan, A., Kim, J. (eds.) Cold War Hothouses: Inventing Postwar Culture, From Cockpit to Playboy. Princeton Architectural Press, New York (2004)Google Scholar
  4. 4.
    Knippers, J., Menges, A.: Fibres rethought - towards novel constructional articulation. Detail Rev. Archit. 15, 21–23 (2015)Google Scholar
  5. 5.
    Prado, M., Dörstelmann, M., Schwinn, T., Menges, A., Knippers, J.: Coreless filament winding: robotically fabricated fiber composite building components. In: McGee, W., Ponce de Leon, M. (eds.) Robotic Fabrication in Architecture, Art and Design 2014, pp. 275–289. Springer, Switzerland (2014)Google Scholar
  6. 6.
    Vasey, L., Baharlou, E., Dörstelmann, M., Koslowski, V., Prado, M., Schieber, G., Menges, A., Knippers, J.: Behavioral design and adaptive robotic fabrication of a fiber composite compression shell with pneumatic formwork. In: Combs, L., Perry, C. (eds.) Acadia 2015: Computational Ecologies: Design in the Anthropocene, Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture, pp. 297–309. Cincinnati, OH (2015)Google Scholar
  7. 7.
    Bock, T., Linner, T.: Robot-Oriented Design: Design and Management Tools for the Deployment of Automation and Robotics in Construction. Cambridge University Press, New York (2015)CrossRefGoogle Scholar
  8. 8.
    Doerstelmann, M., Knippers, J., Menges, A., Parascho, S., Prado, M., Schwinn, T.: ICD/ITKE research pavilion 2013–14: modular coreless filament winding based on beetle elytra. Arch. Des. 85(5), 54–59 (2015)Google Scholar
  9. 9.
    Felbrich, B., Früh, N., Prado, M., Saffarian, S., Solly, J., Vasey, L., Knippers, J., Menges, A.: Multi-machine fabrication: an integrative design process utilizing an autonomous UAV and industrial robots for the fabrication of long-span composite structures. In: Nagakura, T., Tibbits, S., Mueller, C., Ibañez, M. (eds.) Acadia 2017: Disciplines & Disruption, Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture, pp. 248–259. Cambridge, MA. (2017)Google Scholar
  10. 10.
    Tan, Y., Zhong-yang, Z.: Research advance in swarm robotics. Defence Technol. 9(1), 18–39 (2013)CrossRefGoogle Scholar
  11. 11.
    Petersen, K., Nagpal, R., Werfel, J.: TERMES: an autonomous robotic system for three-dimensional collective construction. In: Durrant-Whyte, H., Roy, N., Abbeel, P. (eds.) Robotics: Science and Systems VII, pp. 177–184, MIT Press, Cambridge (2012)Google Scholar
  12. 12.
    Mirjan, A., Gramazio, F., Kohler, M.: Building with flying robots. In: Gramazio, F., Kohler, M., Langenberg, S. (eds.) Fabricate: Negotiating Design & Making, pp. 267–271. UCL Press, London (2014)Google Scholar
  13. 13.
    Stranieri A., Ferrante E., Turgut A.E., Trianni V., Pinciroli C., Birattari M., Dorigo M.: Self-organized flocking with a heterogeneous mobile robot swarm. In: Lenaerts, T., Giacobini, M., Bersini, H., Bourgine, P., Dorigo, M., Doursat, R. (eds.) Advances in Artificial Life, ECAL 2011, pp. 789–796. MIT Press, Cambridge (2011)Google Scholar
  14. 14.
    Jokic, S., Novikov, P., Maggs, S., Sadaan, D., Jin, S., Nan, C.: Robotic positioning device for three-dimensional printing, ArXiv, Spain. Accessed 25 July 2018
  15. 15.
    Yablonina, M., Prado, M., Baharlou, E., Schwinn, T., Menges, A.: Mobile robotic fabrication system for filament structures. In: Sheil, B., Menges, A., Glynn, R., Skavara, M. (eds.) Fabricate: Rethinking Design and Construction, pp. 202–209. UCL Press, London (2017)Google Scholar
  16. 16.
    Dethe, R.D., Jaju, S.B.: Developments in wall climbing robots: a review. Int. J. Eng. Res. Gen. Sci. 2(3) (2014)Google Scholar
  17. 17.
    Knippers, J., La Magna, R., Menges, A., Reichert, S., Schwinn, T., Weimar, F.: ICD/ITKE research pavilion 2012 – coreless filament winding on the morphological principles of an arthropod exoskeleton. Architectural Des. 85(5), 48–53 (2015)Google Scholar
  18. 18.
    Kaltenbrunner, M., Bencina, R.: reacTIVision: a computer-vision framework for table-based tangible interaction. In: Proceedings of the 1st International Conference on Tangible and Imbedded Interaction, TEI 2007, pp. 69–74. Baton Rouge, LA (2007)Google Scholar
  19. 19.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. SSC 4(2), 100–107 (1968)CrossRefGoogle Scholar
  20. 20.
    Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 47(6), 2280–2292 (2014)CrossRefGoogle Scholar
  21. 21.
    Peek, N.: Making Machines that Make: Object-Oriented Hardware Meets Object-Oriented Software. Ph.D. thesis, Massachusetts Institute of Technology (2016)Google Scholar
  22. 22.
    Hensel, M., Menges, A.: Morpho-ecologies. Architectural Association, London (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Computational Design and ConstructionUniversity of StuttgartStuttgartGermany

Personalised recommendations