A Consideration of Effects of Different Numbers of Seconds in Spontaneous Time Production with fMRI Analysis

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 850)


Time is a fundamental property of human perception and action. Previous studies on how time perception is related to the brain have been refined over the years. Cerebral activity areas relating to time are a basal ganglia, a cerebellum, an insula, a right inferior frontal gyrus (IFG) and a right inferior parietal lobule (IPL). In our previous study, a spontaneous time production task was conducted using the fMRI measurement. As the experimental conditions, the different number of seconds (5 s and 10 s) and the different situations were set. In brain analysis results by situation conditions, significant activities were obtained in the right IPL and the right IFG. Therefore, analysis results were considered to be brain activity related to time perception. In this paper, we describe analysis results by the difference in the number of seconds.


Time perception Time production fMRI BCI 


  1. 1.
    Yu, Y., Zhou, Z., Liu, Y., Jiang, J., Yin, E., Zhang, N., Wang, Z., Liu, Y., Wu, X., Hu, D.: Self-paced operation of a wheelchair based on a hybrid brain-computer interface combining motor imagery and P300 potential. IEEE Trans. Neural Syst. Rehabil. Eng. 25(12), 2516–2526 (2017)CrossRefGoogle Scholar
  2. 2.
    Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kubler, A., Perelmouter, J., Taub, E., Flor, H.: A spelling device for the paralyzed. Nature 398(6725), 297 (1999)CrossRefGoogle Scholar
  3. 3.
    Tanaka, K., Matsunaga, K., Wang, H.O.: Electroencephalogram-based control of an electric wheelchair. IEEE Trans. Rob. 21(4), 762–766 (2005)CrossRefGoogle Scholar
  4. 4.
    Kelly, S.P., Lalor, E.C., Finucane, C., McDarby, G., Reilly, R.B.: Visual spatial attention control in an independent brain-computer interface. IEEE Trans. Biomed. Eng. 52(9), 1588–1596 (2005)CrossRefGoogle Scholar
  5. 5.
    Gao, S., Wang, Y., Gao, X., Hong, B.: Visual and auditory brain–computer interfaces. IEEE Trans. Biomed. Eng. 61(5), 1436–1447 (2014)CrossRefGoogle Scholar
  6. 6.
    Espinosa-Fern, L., Mir, E., Cano, C.M., Buela-Casal, G.: Age-related changes and gender differences in time estimation. Acta Psychol. 112(3), 221–232 (2003)CrossRefGoogle Scholar
  7. 7.
    Bueti, D., Macaluso, E.: Auditory temporal expectations modulate activity in visual cortex. NeuroImage 51(3), 1168–1183 (2010)CrossRefGoogle Scholar
  8. 8.
    Ohmae, S., Uematsu, A., Tanaka, M.: Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. J. Neurosci. 33(39), 15432–15441 (2013)CrossRefGoogle Scholar
  9. 9.
    Fontes, R., Ribeiro, J., Gupta, D.S., Machado, D., Lopes-Junior, F., Magalhaes, F., Bastos, V.H., Rocha, K., Marinho, V., Lima, G., Velasques, B., Ribeiro, P., Orsini, M., Pessoa, B., Leite, M.A., Teixeira, S.: Time perception mechanisms at central nervous system. Neurol. Int. 8(1), 5939 (2016)CrossRefGoogle Scholar
  10. 10.
    Hironaga, N., Mitsudo, T., Hayamizu, M., Nakajima, Y., Takeichi, H., Tobimatsu, S.: Spatiotemporal brain dynamics of auditory temporal assimilation. Sci. Reports 7(1), 11400 (2017)CrossRefGoogle Scholar
  11. 11.
    Hayashi, M.J., Ditye, T., Harada, T., Hashiguchi, M., Sadato, N., Carlson, S., Walsh, V., Kanai, R.: Time adaptation shows duration selectivity in the human parietal cortex. PLOS Biol. 13(9), e1002262 (2015)CrossRefGoogle Scholar
  12. 12.
    Hayasaka, R., Mitani, K., Hoshino, Y.: Basic verification of the brain areas related with the time measurement to use BCI. In: Joint 17th World Congress of International Fuzzy Systems Association (IFSA) and 9th International Conference on Soft Computing and Intelligent Systems (SCIS), pp. 1–6 (2017)Google Scholar
  13. 13.
    Kuriyama, K., Uchiyama, M., Suzuki, H., Tagaya, H., Ozaki, A., Aritake, S., Kamei, Y., Nishikawa, T., Yakahashi, K.: Circadian fluctuation of time perception in healthy human subjects. Neurosci. Res. 46(1), 23–31 (2003)CrossRefGoogle Scholar
  14. 14.
    Eickihoff, S.B., Stephan, K.E., Mohlberg, H., Grefkes, C., Fink, G.R., Amunts, K., Zilles, K.: A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4), 1325–1335 (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kochi University of TechnologyKami CityJapan

Personalised recommendations