Skip to main content

Analytical Study of a Nonlinear Beam Including a Piezoelectric Patch

  • Chapter
  • First Online:
Problems of Nonlinear Mechanics and Physics of Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 94))

Abstract

The chapter presents modal responses and nonlinear interactions of a multi-physics nonlinear beam. It is composed of a piezoelectric material which is patched on a two-dimensional nonlinear Euler–Bernoulli beam. The spatio-temporal variables of governing equations of the composite beam are separated. Traced frequencies and mode shapes of the overall beam show modifications of its modal response due to the piezoelectric patch and its position on the beam. Studying the system in time domain via a multiple scale technique, leads to detection of its responses as function of frequency of excitation which present strongly nonlinear response due to nonlinearity of the beam and also presence of the piezoelectric patch.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badel, A., Sebald, G., Guyomar, D., Lallart, M., L E., Richard, C., Qiu, J.: Piezoelectric vibration control by synchronized switching on adaptative voltage sources : towards wideband semi-active damping. J. Acoust. Soc. Am. 119, 2815–2825 (2006)

    Google Scholar 

  2. Ducarne, J., Thomas, O., Deü, J.: Structural vibration reduction by switch shunting of piezoelectric elements : modeling and optimization. J. Interll. Mater. Syst. Struct. 21, 797–816 (2010)

    Google Scholar 

  3. Erturk, A., Renno, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an l-shaped beam-mass structure with an application to uavs. J. Interll. Mater. Syst. Struct. 20, 529–544 (2009)

    Google Scholar 

  4. Yi, K., Monteil, M., Collet, M., Chesne, S.: Smart metacomposite-based systems for transient elastic wave energy harvesting. Smart Mater. Struct. 26(035), 040 (2017)

    Google Scholar 

  5. Hodges, D.H., Ormiston, R.A., Peters, D.A.: On the nonlinear deformation geometry of euler-bernoulli beams. NASA Technical paper 1566 (1980)

    Google Scholar 

  6. Crespo Da Silva, M.R.M.: Non-linear flexural-flexural-torsional-extensional dynamics of beams-i. formulation. Int. J. Solids Struct. 24, 1225–1234 (1988a)

    Google Scholar 

  7. Crespo Da Silva, M.R.M.: Non-linear flexural-flexural-torsional-extensional dynamics of beams-it. response analysis. Int. J. Solids Struct. 24, 1235–1242 (1988b)

    Google Scholar 

  8. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite beams-i. equations of motion. Nonlinear Dyn. 1, 477–502 (1990)

    Google Scholar 

  9. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite beams-ii. flapwise excitations. Nonlinear Dyn. 2, 1–34 (1991a)

    Google Scholar 

  10. Pai, P.F., Nayfeh, A.H.: Three-dimensional nonlinear vibrations of composite beams-iii. chordwise excitations. Nonlinear Dyn. 2, 137–156 (1991b)

    Google Scholar 

  11. Abdelkefi, A., Nayfeh, A., Hajj, M.: Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dyn. 67, 1221–1232 (2012a)

    Google Scholar 

  12. Abdelkefi, A., Nayfeh, A., Hajj, M.: Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters. Nonlinear Dyn. 67, 1147–1160 (2012b)

    Google Scholar 

  13. Bibo, A., Abdelkefi, A., Daqaq, M.: Modeling and characterization of a piezoelectric energy harvester under combianed aerodynamic and base excitations. J. Vib. Acoust. 137(031,017) (2015). (12 pages)

    Google Scholar 

  14. Mam, K., Peigney, M., Siegert, D.: Finite strain effects in piezoelectric energy harversters under direct and parametric excitations. J. Sound Vib. 389, 411–437 (2017)

    Google Scholar 

  15. Nayfeh, A., Pai, P.: Linear and Nonlinear Structural Mechanics. wiley series in nonlinear science edn. Wiley-Vch (2004)

    Google Scholar 

  16. IEEE standard on piezoelectricity. IEEE 176 (1987)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank and acknowledge the followings for supporting this research work: (i) the “Ministère de la Transition écologique et solidaire” and (ii) LABEX CELYA (ANR-10-LABX-0060) of the “Université de Lyon” within the program Investissement d’Avenir (ANR-11-IDEX-0007) operated by the French National Research Agency(ANR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Guillot .

Editor information

Editors and Affiliations

Appendices

Appendix 1

$$\begin{aligned} M&=\int _{0}^{L}m(s)\phi _n(s)^2 \ ds \end{aligned}$$
(57)
$$\begin{aligned} \mathcal {C}_v&=\int _{0}^{L}c_v\phi _n(s)^2 \ ds \end{aligned}$$
(58)
$$\begin{aligned} T_v&=\int _{0}^{L}-EI(s)\phi _n^{iv}(s)\phi _n(s) \ ds \end{aligned}$$
(59)
$$\begin{aligned} T_{vvv}&=\int _{0}^{L}-EI(s)[\phi _n'(s)\phi _{n}''^2(s)-\phi _n'^2(s)\phi _n'''(s)]'\phi _n(s) \ ds \end{aligned}$$
(60)
$$\begin{aligned} T_{vv1}&=\int _{0}^{L}[-\phi _n'(s)\int _{0}^{L}\frac{c_u}{2} \int _{0}^{s}\phi _n'^2(s) \ ds \ ds]' \phi _n(s)\ ds \end{aligned}$$
(61)
$$\begin{aligned} T_{vv2}&=\int _{0}^{L}[-\phi _n'(s)\int _{0}^{L}\frac{-m(s)}{2}\int _{0}^{s}\phi _n'^2(s)\ ds \ ds]'\phi _n(s) \ ds \end{aligned}$$
(62)
$$\begin{aligned} T_{vvp}&=\int _{0}^{L}6V_c[\phi _n''(s)\phi _n'''(s)]'\phi _n(s)\ ds \end{aligned}$$
(63)

Appendix 2

$$\begin{aligned} \alpha _1&=\bigg (\frac{w_{vn}}{2}T_{vv2}-\frac{3}{8}T_{vvv}-\frac{T_{vvp}}{4}\bigg (\frac{2}{T_v}+\frac{T_{vvp}}{T_v-4Mw_{vn}^2}\bigg )\bigg )^2\end{aligned}$$
(64)
$$\begin{aligned} \alpha _2&=2Mw_{vn}\sigma \sqrt{\alpha _1}\end{aligned}$$
(65)
$$\begin{aligned} \alpha _3&=(Mw_{vn}\sigma )^2+\frac{w_{vn}^2\mathcal {C}_v^2}{4}\end{aligned}$$
(66)
$$\begin{aligned} \alpha _4&=\bigg (\frac{m_b\omega _{vn}f}{2}\bigg )^2 \end{aligned}$$
(67)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guillot, V., Ture Savadkoohi, A., Lamarque, CH. (2019). Analytical Study of a Nonlinear Beam Including a Piezoelectric Patch. In: Andrianov, I., Manevich, A., Mikhlin, Y., Gendelman, O. (eds) Problems of Nonlinear Mechanics and Physics of Materials. Advanced Structured Materials, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-92234-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92234-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92233-1

  • Online ISBN: 978-3-319-92234-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics