Skip to main content

Wave-Particle Duality and Quantum-Classical Analogy

  • Chapter
  • First Online:
  • 1144 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 94))

Abstract

Mathematical analogy between the systems of weakly coupled oscillators and multi-level quantum system allows considering them in the framework of a unified approach. In particular, an asymptotic interpretation of wave-particle duality provides an efficient analytical tool for solving both linear and nonlinear non-stationary dynamical problems of classical and quantum mechanics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrianov, I.V., Barantsev, R.G., Manevich, L.I.: Asymptotic Mathematics and Synergetics. URSS, Moscow (2004)

    Google Scholar 

  2. Dauxois, T., Peyrard M.: Physics of Solitons. Cambridge University Press (2006)

    Google Scholar 

  3. Fadeev, L.D., Jakubovsky, O.A.: Lekcii po kvantovoj mekhanike dlya studentov matematikov (Quantum mechanics for mathematicians). LGU, Leningrad (1980)

    Google Scholar 

  4. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw Hill, New York (1965)

    Google Scholar 

  5. Glauber, R.J.: Photon correlations. Phys. Rev. Lett. 10, 84–86 (1963)

    Article  MathSciNet  Google Scholar 

  6. Gann, V.V., Kosevich, YuA: Bloch oscillations of spin waves in an inhomogeneous magnetic field. Low Temp. Phys. 36, 722–735 (2010)

    Article  Google Scholar 

  7. Gelfer, J.M., Lyuboshits, V.L., Podgoretsky, M.I.: Gibbs Paradox and the Identity of Particles in Quantum Mechanics (Science). Nauka, Moscow (1975)

    Google Scholar 

  8. Heisenberg, W.: Physics and Philosophy. Harper & Row, New York (1958)

    Google Scholar 

  9. Kast, M., Pacher, C., Strasser, G., Gornik, E., Werner, W.S.M.: Wannier-Stark states in finite superlattices. Phys. Rev. Lett. 89, 136803 (2002)

    Article  Google Scholar 

  10. Klein, M.J.: Einstein and the wave-particle duality. Nat. Philos. 3, 3–49 (1964)

    Google Scholar 

  11. Kosevich, A.M.: Semiclassical quantization of magnetic solitons. Phys. D 119, 134–139 (1998)

    Article  Google Scholar 

  12. Kovaleva, N.A., Manevitch, L.I.: Complex breather and kink-like excitations in helix oscillatory chain. In: Bernardini, D., Rega, G., Romeo, F. (Eds.) Proceedings of 7th European Nonlinear Dynamics Conference (ENOC 2011), Rome (2011)

    Google Scholar 

  13. Kovaleva, A.S., Manevitch, L.I.: Classical analog of quasilinear Landau-Zener tunneling. Phys. Rev. E 85, 016202 (2012)

    Article  Google Scholar 

  14. Kovaleva, A.S., Manevitch, L.I., Kosevich, YuA: Fresnel integrals and irreversible energy transfer in an oscillatory system with time-dependent parameters. Phys. Rev. E 83, 026602 (2011)

    Article  Google Scholar 

  15. Kosevich, YuA, Manevitch, L.I., Savin, A.V.: Wandering breathers and self-trapping in weakly coupled nonlinear chains, Classical counterpart of macroscopic tunneling quantum dynamics. Phys. Rev. E 77, 046603 (2008)

    Article  MathSciNet  Google Scholar 

  16. Kosevich, Y.A., Manevitch, L.I., Manevitch, E.L.: Vibrational analogue of nonadiabatic Landau-Zener tunneling and a possibility for the creation of a new type of energy traps. Phys. Usp. 53, 1281–1286 (2010)

    Article  Google Scholar 

  17. Kozhevnikov, A.B.: Dirak i kvantovaya teoriya izlucheniya (Dirac and quantum theory of radiation). In: Ejnshtejnovskij sbornik (Selection of the papers devoted to Einstein), pp. 246–270. Nauka, Moscow (1988)

    Google Scholar 

  18. Landau, L.: On the theory of transfer of energy at collisions II. Phys. Z. Sowjetunion 2, 46–50 (1932)

    Google Scholar 

  19. Liu, J., Fu, L., Ou, B.-Y., Chen, S.-G.: Choi, D-Il., Wu, B., Niu, Q.: Theory of nonlinear Landau-Zener tunneling. Phys. Rev. A 66, 023404 (2002)

    Article  Google Scholar 

  20. Malkin, I.A., Man’ko, V.I.: Dinamicheskie simmetrii i kogerentnye sostoyaniya kvantovyh system (Dynamical Symmetries and Coherent States of Quantum Systems). Nauka, Moscow (1979)

    Google Scholar 

  21. Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillators chains. In: Awrejcewicz, J. Sendkowski, D., Mrozowski, J. (eds). Proceedings of 8th Conference on Dynamical Systems - Theory and Applications, Lodz (2005)

    Google Scholar 

  22. Manevitch, L.I.: New approach to beating phenomenon in coupled nonlinear oscillatory chains. Arch. Appl. Mech. 77, 301–312 (2007)

    Article  Google Scholar 

  23. Manevitch, L.I.: Vibro-impact models for smooth non-linear systems. In: Ibrahim, R.A., Babitsky, V.I., Okuma, M. (eds.) Lecture Notes in Applied and Computational Mechanics, Vibro-impact Dynamics of Ocean Systems and Related Problems. Lecture Notes in Applied and Computational Mechanics, vol. 44, pp. 191–201. Springer, Berlin (2009)

    Chapter  Google Scholar 

  24. Manevitch, L.I., Gendelman, O.V.: Tractable Models of Solid Mechanics. Formulation, Analysis and Interpretation. Springer, New York (2011)

    Book  Google Scholar 

  25. Manevich, A.I., Manevitch, L.I.: Mechanics of Nonlinear Systems with internal resonances. World Scientific, London (2005)

    Book  Google Scholar 

  26. Manevitch, L.I., Musienko, A.I.: Limiting phase trajectories and energy exchange between anharmonic oscillator and external force. Nonlinear Dyn. 58, 633–642 (2009)

    Article  Google Scholar 

  27. Manevitch, L.I., Savin, A.V.: Nonlinear modes and energy transfer in polymer chains. Polym. Sci. A 47, 499–527 (2005)

    Google Scholar 

  28. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and the origin of energy localization in nonlinear oscillatory chains. Phys. Rev. E 82, 036602 (2010)

    Article  MathSciNet  Google Scholar 

  29. Manevitch, L.I., Smirnov, V.V.: Limiting phase trajectories and thermodynamics of molecular chains. Phys. Dokl. 55, 324–328 (2010)

    Article  Google Scholar 

  30. Manevitch, L.I., Smirnov, V.V.: Resonant energy exchange in nonlinear oscillatory chains and Limiting Phase Trajectories, from small to large system. In: Vakakis, A.F. (ed.) Advanced Nonlinear Strategies for Vibration Mitigation and System Identification. CISM Courses and Lectures, vol. 518, pp. 207–258. Springer, New York (2010)

    Chapter  Google Scholar 

  31. Manevitch, L.I., Mikhlin, YuV, Pilipchuk, V.N.: Metod normalnyh kolebanij dlya sushchestvenno nelinejnyh sistem (Method of Normal Vibrations for Essentially Nonlinear Systems). Nauka, Moscow (1989)

    Google Scholar 

  32. Manevitch, L.I., Savin, A.V., Smirnov, V.V., Volkov, S.N.: Solitons in nondegenerate bistable systems. Phys. Usp. 37, 859–879 (1994)

    Article  Google Scholar 

  33. Manevitch, L.I., Sigalov, G.M., Savin, A.V.: Topological solitons in non-degenerate one-component chains. Phys. Rev. E. 65(1–22), 036618 (2002)

    Google Scholar 

  34. Manevitch, L.I., Savin, A.V., Lamarque, C.-H.: Analytical study and computer simulation of discrete optical in a zigzag chain. Phys. Rev. B. 74, 014305 (2006)

    Article  Google Scholar 

  35. Manevitch, L.I., Savin, A.V., Lamarque, C.-H.: Low-frequency breathers in a polyethylene crystal. Phys. D 237, 600–612 (2008)

    Article  MathSciNet  Google Scholar 

  36. Manevitch, L.I., Kosevich, Y.A., Mane, M., Sigalov, G., Bergman, L.A., Vakakis, A.F.: Towards a new type of energy trap, classical analog of quantum Landau-Zener tunneling. Int. J. Non-Linear Mech. 46, 247–252 (2011)

    Article  Google Scholar 

  37. Manevitch, L.I., Kovaleva, A.S., Shepelev, D.S.: Non-smooth approximations of the limiting phase trajectories for the Duffing oscillator near 1,1 resonance. Phys. D 240, 1–12 (2011)

    Article  MathSciNet  Google Scholar 

  38. Manevitch, L.I., Kovaleva, M.A., Pilipchuk, V.N.: Non-conventional synchronization of weakly coupled active oscillators. Europhys. Lett. 101(5), 50002 (2013)

    Article  Google Scholar 

  39. Mensky, M.B.: Measurability of quantum fields and the energy-time uncertainty relation. Phys. Usp. 54, 519–528 (2011)

    Article  Google Scholar 

  40. Migdal, A.B.: Kvantovaya fizika i Nils Bor (Quantum Physics and Niels Bohr). Znanie, Moscow (1987)

    Google Scholar 

  41. Musienko, A.I., Manevitch, L.I.: Classical mechanical analogs of relativistic effects. Phys. Usp. 47, 797–820 (2004)

    Article  Google Scholar 

  42. Newell, A.C.: Nonlinear Tunnelling. J. of Math. Phys. 19, 1126–1133 (1978)

    Google Scholar 

  43. Novikov, S., Manakov, S.V., Pitaevskij, L.P., Zakharov, V.E.: Theory of Solitons. The Inverse Scattering Methods. Plenum Publishing Corporation, New York; Consultants Bureau, London (1984)

    Google Scholar 

  44. Ohanian, H.C.: Einstein’s Mistakes, the Human Failings of Genius. W.W. Norton, New York (2008)

    MATH  Google Scholar 

  45. Ovchinnikov, A.A., Erikhman, N.S., Pronin, K.A.: Vibrational-Relaxational Excitations in Nonlinear Molecular Systems. Kluwer Academic Press, New York (2001)

    Book  Google Scholar 

  46. Pilipchuk, V.N.: The calculation of strongly non-linear systems close to vibration impact systems. J. Appl. Math. Mech. 49, 572–578 (1985)

    Article  MathSciNet  Google Scholar 

  47. Pilipchuk, V.N.: Nonlinear Dynamics. Between Linear and Impact Limits. Springer, Berlin (2010)

    MATH  Google Scholar 

  48. Pippard, A.B.: The Physics of Vibration. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  49. Pokrovsky, V.L.: Landau and modern physics. Phys. Usp. 179(11), 1237–1244 (2009). https://doi.org/10.3367/UFNr.0179.200911j

    Article  Google Scholar 

  50. Poggi, P., Ruffo, S.: Exact solutions in the FPU oscillator chain. Phys. D 103, 251–272 (1997)

    Article  MathSciNet  Google Scholar 

  51. Preparata, G.: An Introduction to a Realistic Quantum Physics. World Scientific, Singapore (2002)

    Book  Google Scholar 

  52. Radhavan, S., Smerzi, A., Fantoni, S., Shenoy, R.: Coherent oscillations between two weakly coupled Bose-Einstein condensates, Josephson effects, π oscillations, and macroscopic quantum self-trapping. Phys. Rev. A 59, 620–633 (1999)

    Article  Google Scholar 

  53. Savin, A.V., Manevitch, L.I., Christiansen, P.L., Zolotaryuk, A.V.: Nonlinear Dynamics of zigzag molecular chains. Phys. Usp. 42, 245–260 (1999)

    Article  Google Scholar 

  54. Savin, A.V., Manevitch, L.I.: Solitons in spiral polymeric macromolecules. Phys. Rev. E 61, 7065–7075 (2000)

    Article  Google Scholar 

  55. Scott, E.: Nonlinear Science. Emergence and dynamics of coherent structures. Alwyn Scott, Oxford (2003)

    MATH  Google Scholar 

  56. Shelepin, L.A.: Kogerentnost (Coherence). Znanie, Moscow (1983)

    Google Scholar 

  57. Shepelev D.S., Smirnov V.V., Manevitch L.I.: Limiting Phase Trajectories and Energy Transfer in Asymmetric Fermi-Pasta-Ulam chain. In: Bernardini, D., Rega, G., Romeo, F. (eds). Proceedings of 7th European Nonlinear Dynamics Conference (ENOC 2011), Rome (2011)

    Google Scholar 

  58. Smirnov, V.V., Manevitch, L.I.: Limiting phase trajectories and dynamic transitions in nonlinear periodic systems. Acoust. Phys. 57, 271–276 (2011)

    Article  Google Scholar 

  59. Smirnov, V.V., Shepelev, D.S., Manevitch, L.I.: Energy exchange and transition to localization in the asymmetric Fermi-Pasta-Ulam oscillatory chain. Eur. Phys. J. B 86(1), 10 (2013)

    Article  MathSciNet  Google Scholar 

  60. Starosvetsky, Y., Manevitch, L.I.: Nonstationary regimes in a Duffing oscillator subject to biharmonic forcing near a primary resonance. Phys. Rev. E 83, 046211 (2011)

    Article  Google Scholar 

  61. Tarasov, L.V.: Osnovy kvantovoj mekhaniki (Foundations of Quantum Mechanics) Librocom (2009)

    Google Scholar 

  62. Vakakis, A.F., Manevitch, L.I., Mikhlin, YuV, Pilipchuk, V.N., Zevin, A.A.: Normal Modes and Localization in Nonlinear Systems. Wiley, New York (1996)

    Book  Google Scholar 

  63. Wannier, G.H.: Wave functions and effective Hamiltonian for Bloch electrons in an electric field. Phys. Rev. 117, 432–439 (1960)

    Article  MathSciNet  Google Scholar 

  64. Yakushevich, L.I., Savin, A.V., Manevitch, L.I.: Nonlinerar dynamics of topological solitons in DMA. Phys. Rev. E 66, 016614 (2002)

    Article  MathSciNet  Google Scholar 

  65. Zener, C.: Non-Adiabatic Crossing of Energy Levels. Proc. R. Soc. Lond. A. 137, 696–702 (1932)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Russian Science Foundation under grant 16-13-10302.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid I. Manevitch .

Editor information

Editors and Affiliations

Appendices

Appendix A

In accordance with the procedure of the multi-scale expansions we suppose (see, e.g., [25])

$$ \begin{aligned} & \psi_{j} (\tau_{0} ,\tau_{1} , \ldots ) = \psi_{j,0} (\tau_{0} ,\tau_{1} ,) + \varepsilon \psi_{j,1} ( \tau_{0} ,\tau_{1} , \ldots ) + O(\varepsilon^{2} ),\;j = 1,2. \\ & \tilde{\tau } = \tau_{0} ;\;\tau_{1} = \varepsilon \tau_{0} , \ldots \\ & \frac{d}{{d\tilde{\tau }}} = \frac{\partial }{{\partial \tau_{0} }} + \varepsilon \frac{\partial }{{\partial \tau_{1} }} + O(\varepsilon^{2} ) \\ \end{aligned} $$
$$ \begin{array}{*{20}c} {O(1):\frac{{\partial \psi_{j,0} }}{{\partial \tau_{0} }} - i\psi_{j,0} = 0 \to \psi_{j,0} = f_{j,0} (\tau_{1} , \ldots )e^{{i\tau_{0} }} ,\,j = 1,2} \\ \begin{aligned} O(\varepsilon ):\frac{{\partial \psi_{1,1} }}{{\partial \tau_{0} }} - i\psi_{j,1} + \frac{{\partial f_{1,0} }}{{\partial \tau_{1} }}e^{{i\tau_{0} }} - i\beta [(f_{1,0} e^{{i\tau_{0} }} - f_{{_{1,0} }}^{*} e^{{ - i\tau_{0} }} ) - \\ (f_{2,0} e^{{i\tau_{0} }} - f_{2,0}^{*} e^{{ - i\tau_{0} }} )] = 0; \\ \frac{{\partial \psi_{2,1} }}{{\partial \tau_{0} }} - i(\psi_{2,1} + \gamma \,f_{2,0} e^{{i\tau_{0} }} - \gamma \,f_{2,0}^{*} e^{{ - i\tau_{0} }} ) + \frac{{\partial f_{2,0} }}{{\partial \tau_{1} }}e^{{i\tau_{0} }} \\ - i\beta [(f_{2,0} e^{{i\tau_{0} }} - f_{2,0}^{*} e^{{ - i\tau_{0} }} ) - (f_{1,0} e^{{i\tau_{0} }} - f_{1,0}^{*} e^{{ - i\tau_{0} }} )] = 0; \\ \end{aligned} \\ \end{array} $$
(29)

The condition of the absence of the secular terms leads to the equations of the principal asymptotic approximation:

$$ \left\{ {\begin{array}{*{20}c} { - i\frac{{df_{1,0} }}{{d\tau_{1} }} + \beta (f_{1,0} - f_{2,0} ) = 0} \\ { - i\frac{{df_{2,0} }}{{d\tau_{1} }} + \beta [(1 - \gamma /\beta )f_{2,0} - f_{1,0} ] = 0} \\ \end{array} } \right. $$
(30)

Exclusion of the secular terms is equivalent to averaging over the fast time.

Appendix B

Non-smooth variables were used in connection with the elaboration of the method of non-smooth transformation for analysis of vibro-impact or close to them systems [31, 46, 47, 62]. Far going extension of this method was presented in [46]. It turned out unexpectedly [21, 22] that functions \( \tau (\tau_{1} ),\;e(\tau_{1} ) \) describe adequately the intensive energy exchange in the systems, very different from the vibro-impact ones by both their physical content and original mathematical formulation. They describe the beats by the most simple and obvious manner due to the choice of the appropriate non-smooth variables \( \tau (\tau_{1} ),\;e(\tau_{1} ) \).

The form) of the solution corresponding to LPT leads naturally to introducing the saw-tooth time. After such transformation the solution is described by the smooth functions of the non-smooth time (see Appendix D).

Appendix C

The canonical transformation of the variables for the periodic FPU chain has a view [50]:

$$ \begin{array}{*{20}l} {Q_{j} = \sum\limits_{k = 0}^{N - 1} {\sigma_{j,k} } \zeta_{k} } \hfill \\ {\sigma_{j,k} = \left\{ {\begin{array}{*{20}c} {\frac{1}{\sqrt N },} & {k = 0} \\ {\sqrt {\frac{2}{N}} \sin \left( {\frac{2\pi kj}{N} + \gamma } \right),} & {k = 1, \ldots \left[ {\frac{N - 1}{2}} \right]} \\ {\frac{{( - 1)^{j} }}{\sqrt N },} & {k = \frac{N}{2}} \\ {\sqrt {\frac{2}{N}} \cos \left( {\frac{2\pi kj}{N} - \gamma } \right),} & {k = \frac{N}{2} + 1, \ldots ,N - 1} \\ \end{array} } \right.} \hfill \\ {\gamma = \frac{\pi }{4}} \hfill \\ {\sigma_{j,k} = \frac{1}{\sqrt N }\left[ {\sin \left( {\frac{2\pi kj}{N}} \right) + \cos \left( {\frac{2\pi kj}{N}} \right)} \right]} \hfill \\ \end{array} $$
(31)

The quadratic and quartic constituents of the Hamilton function in the normal coordinates of the linearized system are written as follows

$$ H_{2} = \sum\limits_{k = 1}^{N - 1} {\frac{1}{2}(\eta_{k}^{2} + \omega_{k}^{2} \xi_{k}^{2} )} $$
$$ H_{4} = \frac{\beta }{8N}\sum\limits_{k,l,m,n = 1}^{N - 1} {\omega_{k} \omega_{l} \omega_{m} \omega_{n} C_{k,l,m,n} \xi_{k} \xi_{l} \xi_{m} \xi_{n} } $$
$$ C_{k,l,m,n} = - \Delta_{k + l + m + n} + \Delta_{k + l - m - n} + \Delta_{k - l + m - n} + \Delta_{k - l - m + n} $$
(32)
$$ \Delta_{r} = \left\{ {\begin{array}{*{20}l} {( - 1)^{r} ,\;if} \hfill & {r = mN,\;m \in {\rm Z}} \hfill \\ 0 \hfill & {otherwise.} \hfill \\ \end{array} } \right. $$

Appendix D

The advantages of the techniques based on the use of the non-smooth variables are evident while dealing with the nonlinear beats (see Appendix B). They can not be presented as linear combination of NNM because the superposition principle is not valid in this case. It was shown earlier [21,22,23,24, 26, 30, 50], that an efficient temporal description of LPT in nonlinear chains is attained in the terms of the non-smooth functions of slow time \( \tau (\tau_{2} ),\;e(\tau_{2} ) \). They are plotted in Fig. 2 where \( \tau (\tau_{1} ) \) has to be changed to \( \tau (\tau_{2} ) \) and \( e(\tau_{1} ) \) to \( e(\tau_{2} ) \).Then the dependent variables can be presented as [47]

$$ \theta = X_{1} (\tau ) + Y_{1} (\tau )e\left( {\frac{{\tau_{2} }}{a}} \right),\quad \Delta = X_{2} (\tau ) + Y_{2} (\tau )e\left( {\frac{{\tau_{2} }}{a}} \right) $$
(33)

After substitution into the equations of motion of the effective particles one obtains the equations with respect to smooth functions of non-smooth variables \( X_{i} (\tau ),\;Y_{i} (\tau );\;i = 1,2 \).

The possibility of similar substitutions is based on the statement that every periodic process, independently on the class of its smoothness, is expressed by the unique manner as an element of the algebra of hyperbolic numbers through the variables \( \tau \) и e [62]:

$$ x(\tau_{2} ) = x(\tau ,e) = X(\tau ) + e\,Y(\tau ),\;\,e\left( {\tau_{2} } \right) = \frac{d\tau }{{d\tau_{2} }}. $$
(34)

where \( X(\tau ) = \frac{1}{2}\left[ {x(\tau ) + x(2 - \tau )} \right],\quad \,Y(\tau ) = \frac{1}{2}\left[ {x(\tau ) - x(2 - \tau )} \right] \) so, that \( x\,(\tau ,e) \equiv x(\tau ) + e\,Y\left( {\tau \,(t),e\,(t)} \right) \).

At that, the pair \( \{ 1,e\} \), where \( e^{2} = 1 \) is a basis, and the algebraic operations as well as differentiation or integration over time preserve the structure of hyperbolic number. This property provides applicability and convenience of the corresponding transformations while solving the differential equations [47].

Interestingly that the hyperbolic numbers which are frequently used for a simplest illustration of the Clifford algebra, were known from the middle of XIX century as abstract mathematical objects without any connection with vibration processes. On the other side, the elliptic complex numbers with the basis {1, i} (i2 = −1) and corresponding trigonometric functions turned out, in essence, the main tool for the description of such processes.

The analytical presentation of the solution for the FPU chain in the terms of power series over slow time (the periodicity of the process is taken into account by introducing the independent variable τ) can be written as follows:

$$ X_{i} = \sum\limits_{l = 0}^{\infty } {X_{j,l} } \tau^{l} ,\;Y_{i} = \sum\limits_{l = 0}^{\infty } {Y_{j,l} } \tau^{l} , $$
(35)

where \( j = 1,2 \), and the plot corresponding to expressions (35) is presented in Fig. 10.

Fig. 10
figure 10

Time behavior of the symmetric FPU chain corresponding to LPT in coordinates \( \theta ,\Delta \)

Close results can be obtained for the asymmetric FPU potential [58]. The extension to the case of the chain interacting with an elastic foundation is also possible. Then a minimum frequency in the spectrum of the linearized system differs from zero [28]. The coherence domains in this case are formed, contrary to the FPU chain, in the low part of the spectrum (closely to the frequency gap) if one deals with a soft nonlinearity (similarly to the Frenkel-Kontorova model). With such change all the results presented above are valid. They can be applied to the analysis of the nonlinear dynamics of crystalline oligomers in the vicinity of the optic branch of the dispersion curve. This allows one to clarify the most efficient mechanisms of the energy exchange and the transition to energy localization in such systems. Let us note that the localization of the vibrations in polyatomic molecules and their role in the relaxation processes are considered in monograph [45] (see also citations there).

Appendix E

We consider the two-level approximation corresponding to the Gross-Pitaevsky equation (GP) [2, 52] as a starting point. The GP equation describes a series of the quantum processes, e.g., the Bose-Einstein condensation (BEC), in the framework of self-consistent field approach that is a source of nonlinearity

$$ i\hbar \frac{{\partial\Psi \left( {r,t} \right)}}{\partial t} = - \frac{{\hbar^{2} }}{2m}\nabla^{2}\Psi \left( {r,t} \right) + \left[ {V_{trap} \left( r \right) + g_{0} \left| {\Psi \left( {r,t} \right)} \right|^{2} } \right]\Psi \left( {r,t} \right). $$
(36)

Then the time evolution of the wave function of GP Eq. (36) can be presented as a superposition of the wave functions corresponding to two natural basic states between which a tunneling is possible:

$$ \Psi \left( {r,t} \right) = a_{1} \left( t \right)\Phi _{1} \left( r \right) + a_{2} \left( t \right)\Phi _{2} \left( r \right) $$
(37)

The functions \( \Phi _{1,2} \left( r \right) \) in (37), depending on the space coordinate, are expressed through symmetric \( \Phi _{ + } \left( r \right) \) и and anti-symmetric \( \Phi _{ - } \left( r \right) \) stationary GP states as follows [52]:

$$ \begin{aligned} &\Phi _{1} \left( r \right) = \frac{{\Phi _{ + } +\Phi _{ - } }}{2} \\ &\Phi _{2} \left( r \right) = \frac{{\Phi _{ + } -\Phi _{ - } }}{2} \\ \end{aligned} $$
(38)

We take into account that \( \int {\left| {\Phi _{1,2} \left( r \right)} \right|}^{2} dr = 1 \) and \( \int {\Phi _{1} \left( r \right)\Phi _{2} \left( r \right)} dr = 0 \).

Then, with taking into account (38), we obtain the discrete equations:

$$ \begin{aligned} i\hbar \frac{{\partial a_{1} }}{\partial t} = (E_{1}^{0} + U_{1} \left| {a_{1} } \right|^{2} )a_{1} - \kappa a_{2} , \hfill \\ i\hbar \frac{{\partial a_{2} }}{\partial t} = (E_{2}^{0} + U_{1} \left| {a_{2} } \right|^{2} )a_{2} - \kappa a_{1} \hfill \\ \end{aligned} $$
(39)

This system is similar to that for two weakly interacting classical nonlinear oscillators with cubic nonlinearity, in slow time. Its analysis is performed in [52], and in terms of LPTs in [22, 27]. The detailed development of the LPT concept in application to nonlinear problems is presented in [23, 24, 26, 30].

If one of the parameters of the quantum system (39) depends linearly on the time, the similar procedure leads to the equations which describe a particular case of the nonlinear LZT:

$$ \begin{aligned} & i\dot{a}_{ + } = \varepsilon ta_{ + } +\Omega a_{ - } + \gamma \left| {a_{ + } } \right|^{2} a_{ + } , \\ & i\dot{a}_{ - } =\Omega a_{ + } + \gamma \left| {a_{ - } } \right|^{2} a_{ - } \\ \end{aligned} $$
(40)

The limiting magnitudes of the tunneling probabilities (when \( t \to \infty \)) for system (40) were calculated in [19], and full description of the process is presented in [13]. Here the mathematical analogy is clearly seen with the classical system of weakly coupled nonlinear oscillators the linear stiffness of one of which changes in time. It is possible to note that derivation of both quantum and corresponding classical equations includes the averaging procedure. In quantum case such averaging is a stage of the self-consistence field procedure. In the classical system it is that over the fast time in the method of multiple scale expansions.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manevitch, L.I. (2019). Wave-Particle Duality and Quantum-Classical Analogy. In: Andrianov, I., Manevich, A., Mikhlin, Y., Gendelman, O. (eds) Problems of Nonlinear Mechanics and Physics of Materials. Advanced Structured Materials, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-92234-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92234-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92233-1

  • Online ISBN: 978-3-319-92234-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics