Advertisement

Software Development for Autonomous and Social Robotics Systems

  • Chong Sun
  • Jiongyan Zhang
  • Cong Liu
  • Barry Chew Bao King
  • Yuwei Zhang
  • Matthew Galle
  • Maria Spichkova
  • Milan Simic
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 98)

Abstract

One of the core features of social robotics system is a physical interaction between humans and humanoid robots. This provides additional challenges, both from safety and usability prospectives. When dealing with human-robot interaction, human safety has the highest priority. While in industrial environment we have robot cells to protect humans, in social robotics, that we consider, physical contact is possible, as well as other interactions, with consequences that might be in psychological areas. For example, the conversation with children might have different requirements in comparison to the conversation with adults, the behavioural assumptions might be different, etc. This paper summarises the core results of a project on social robotics system, where an autonomous humanoid robot guides visitors through a lab tour. The results of our work were implemented on the humanoid PAL REEM robot. The implementation includes a web-application to support the management of robot-guided tours. The application also provides recommendations for the users as well as allows for a visual analysis of historical data on the tours.

Notes

Acknowledgements

The project was sponsored by the Commonwealth Bank of Australia (CBA), Stockland Corporation Limited and the Australian Technology Network of Universities (ATN). We would like to thank William Judge (CBA) and Alec Webb (ATN) for numerous discussions and support.

References

  1. 1.
    Alemi, M., Meghdari, A., Ghazisaedy, M.: The impact of social robotics on L2 learners anxiety and attitude in English vocabulary acquisition. In: Social Robotics, pp. 523–535 (2015)CrossRefGoogle Scholar
  2. 2.
    Bauer, V., Broy, M., Irlbeck, M., Leuxner, C., Spichkova, M., Dahlweid, M., Santen, T.: Survey of modeling and engineering aspects of self-adapting & self-optimizing systems. TU München, Technical report (TUM-I130307) (2013)Google Scholar
  3. 3.
    Blech, J.O., Spichkova, M., Peake, I., Schmidt, H.: Cyber-virtual systems: simulation, validation & visualization. In: ENASE (2014)Google Scholar
  4. 4.
    Blech, J.O., Spichkova, M., Peake, I., Schmidt, H.: Visualization, simulation and validation for cyber-virtual systems. In: Maciaszek, L., Filipe, J. (eds.) Evaluation of Novel Approaches to Software Engineering, pp. 140–154. Springer, Cham (2015)CrossRefGoogle Scholar
  5. 5.
    Cabibihan, J.-J., Javed, H., Ang, M., Aljunied, S.M.: Why robots? A survey on the roles and benefits of social robots in the therapy of children with autism. Int. J. Soc. Robot. 5(4), 593–618 (2013)CrossRefGoogle Scholar
  6. 6.
    Christianto, A., Chen, P., Walawedura, O., Vuong, A., Feng, J., Wang, D., Spichkova, M.: Software engineering solutions to support vertical transportation. CoRR (2017)Google Scholar
  7. 7.
    Clunne-Kiely, L., Idicula, B., Payne, L., Ronggowarsito, E., Spichkova, M., Simic, M., Schmidt, H.: Modelling and implementation of humanoid robot behaviour. In: 21st International Conference on Knowledge-Based and Intelligent Information & Engineering Systems, pp. 2249–2258. Elsevier (2017)CrossRefGoogle Scholar
  8. 8.
    Dobi, S., Gleirscher, M., Spichkova, M., Struss, P.: Model-based hazard and impact analysis. Technische Universität München, Technical report (TUM-I1333) (2013)Google Scholar
  9. 9.
    Duffy, B.R.: Anthropomorphism and the social robot. Robot. Auton. Syst. 42(3), 177–190 (2003)CrossRefGoogle Scholar
  10. 10.
    Duffy, B.R., Rooney, C., O’Hare, G.M., O’Donoghue, R.: What is a social robot? In: 10th Irish Conference on AI&CS (1999)Google Scholar
  11. 11.
    Elbanhawi, M., Simic, M., Jazar, R.: Autonomous robots path planning: an adaptive roadmap approach. Appl. Mech. Mater. 373, 246–254 (2013)CrossRefGoogle Scholar
  12. 12.
    Eyssel, F., Kuchenbrandt, D., Bobinger, S., de Ruiter, L., Hegel, F.: ‘If you sound like me, you must be more human’: on the interplay of robot and user features on human-robot acceptance and anthropomorphism. In: 7th ACM/IEEE International Conference on Human-Robot Interaction, pp. 125–126. ACM (2012)Google Scholar
  13. 13.
    Feil-Seifer, D., Mataric, M.J.: Defining socially assistive robotics. In: International Conference on Rehabilitation Robotics, pp. 465–468. IEEE (2005)Google Scholar
  14. 14.
    Glas, D., Satake, S., Kanda, T., Hagita, N.: An interaction design framework for social robots. In: Robotics: Science and Systems, vol. 7, p. 89 (2012)Google Scholar
  15. 15.
    Klein, B., Cook, G.: Emotional robotics in elder care-a comparison of findings in the UK and Germany. In: Social Robotics, pp. 108–117 (2012)CrossRefGoogle Scholar
  16. 16.
    Laali, M., Liu, H., Hamilton, M., Spichkova, M., Schmidt, H.W.: Test case prioritization using online fault detection information. In: Bertogna, M., Pinho, L., Quiñones, E. (eds.) Reliable Software Technologies-Ada-Europe 2016, pp. 78–93. Springer International Publishing, Cham (2016)Google Scholar
  17. 17.
    Leite, I., Martinho, C., Paiva, A.: Social robots for long-term interaction: a survey. In: Social Robotics, pp. 291–308 (2013)CrossRefGoogle Scholar
  18. 18.
    Lin, P., Abney, K., Bekey, G.A.: Robot Ethics: The Ethical and Social Implications of Robotics. MIT Press, Cambridge (2011)Google Scholar
  19. 19.
    Liu, H., Spichkova, M., Schmidt, H.W., Sellis, T., Duckham, M.: Spatio-temporal architecture-based framework for testing services in the cloud. In: 24th Australasian Software Engineering Conference, pp. 18–22. ACM (2015)Google Scholar
  20. 20.
    Liu, H., Spichkova, M., Schmidt, H.W., Ulrich, A., Sauer, H., Wieghardt, J.: Efficient testing based on logical architecture. In: 24th Australasian Software Engineering Conference, pp. 49–53. ACM (2015)Google Scholar
  21. 21.
    Pennisi, P., Tonacci, A., Tartarisco, G., Billeci, L., Ruta, L., Gangemi, S., Pioggia, G.: Autism and social robotics: a systematic review. Autism Res. 9(2), 165–183 (2016)CrossRefGoogle Scholar
  22. 22.
    Sabanovic, S., Michalowski, M., Simmons, R.: Robots in the wild: observing human-robot social interaction outside the lab. In: Advanced Motion Control, pp. 596–601. IEEE (2006)Google Scholar
  23. 23.
    Salem, M., Eyssel, F., Rohlfing, K., Kopp, S., Joublin, F.: Effects of gesture on the perception of psychological anthropomorphism: a case study with a humanoid robot. In: Social Robotics, pp. 31–41 (2011)CrossRefGoogle Scholar
  24. 24.
    Shimada, M., Kanda, T., Koizumi, S.: How can a social robot facilitate children’s collaboration? In: Social Robotics, pp. 98–107 (2012)CrossRefGoogle Scholar
  25. 25.
    Simic, M., Spichkova, M., Schmidt, H., Peake, I.: Enhancing learning experience by collaborative industrial projects. In: ICEER 2016, pp. 1–8 (2016)Google Scholar
  26. 26.
    Spichkova, M., Schmidt, H., Peake, I.: From abstract modelling to remote cyberphysical integration/interoperability testing. In: Improving Systems and Software Engineering Conference (2013)Google Scholar
  27. 27.
    Spichkova, M., Simic, M.: Towards formal modelling of autonomous systems. In: Damiani, E., Howlett, R., Jain, L., Gallo, L., De Pietro, G. (eds.) Intelligent Interactive Multimedia Systems and Services, pp. 279–288. Springer, Cham (2015)Google Scholar
  28. 28.
    Spichkova, M., Simic, M.: Autonomous systems research embedded in teaching. In: De Pietro, G., Gallo, L., Howlett, R., Jain, L. (eds.) Intelligent Interactive Multimedia Systems and Services, pp. 268–277. Springer, Cham (2017)Google Scholar
  29. 29.
    Spichkova, M., Simic, M., Schmidt, H.: Formal model for intelligent route planning. Procedia Comput. Sci. 60, 1299–1308 (2015)CrossRefGoogle Scholar
  30. 30.
    Spichkova, M., Simic, M., Schmidt, H., Cheng, J., Dong, X., Gui, Y., Liang, Y., Ling, P., Yin, Z.: Formal models for intelligent speed validation and adaptation. Procedia Comput. Sci. 96, 1609–1618 (2016)CrossRefGoogle Scholar
  31. 31.
    Sun, C., Zhang, J., Liu, C., King, B.C.B., Zhang, Y., Galle, M., Spichkova, M.: Towards software development for social robotics systems. arXiv preprint arXiv:1712.08348 (2017)
  32. 32.
    Trovato, G., Kishi, T., Endo, N., Hashimoto, K., Takanishi, A.: A cross-cultural study on generation of culture dependent facial expressions of humanoid social robot. In: Social Robotics, pp. 35–44 (2012)CrossRefGoogle Scholar
  33. 33.
    Young, J.E., Hawkins, R., Sharlin, E., Igarashi, T.: Toward acceptable domestic robots: applying insights from social psychology. In: Social Robotics, pp. 95–108 (2009)CrossRefGoogle Scholar
  34. 34.
    Yumakulov, S., Yergens, D., Wolbring, G.: Imagery of disabled people within social robotics research. In: Social Robotics, pp. 168–177 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Chong Sun
    • 1
  • Jiongyan Zhang
    • 1
  • Cong Liu
    • 1
  • Barry Chew Bao King
    • 1
  • Yuwei Zhang
    • 1
  • Matthew Galle
    • 1
  • Maria Spichkova
    • 1
  • Milan Simic
    • 1
  1. 1.RMIT UniversityMelbourneAustralia

Personalised recommendations