Skip to main content

Part of the book series: SpringerBriefs in Speech Technology ((BRIEFSSPEECHTECH))

  • 917 Accesses

Abstract

This book introduces the basic definitions of the sensors, the biosensors and their features, and the equivalent components, amplifiers, filters, and bio-measurement systems for further circuit design. It describes and categorizes the mainstream acoustic wave biosensors, including the utilization of the bulk acoustic waves and analysis devices, which imply surface acoustic waves. In addition, the use of the piezoelectric substrates of the acoustic sensors design is included. The different types of the biosensors are presented. Several applications of the acoustic biosensors are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gopalsamy, C., Park, S., Rajamanickam, R., & Jayaraman, S. (1999). The Wearable Motherboard™: The first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Reality, 4(3), 152–168.

    Article  Google Scholar 

  2. Penner, A., Doron, E., & Porat, Y. (2001). U.S. Patent No. 6,198,965. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  3. Mba, D., & Rao, R. B. (2006). Development of acoustic emission technology for condition monitoring and diagnosis of rotating machines; bearings, pumps, gearboxes, engines and rotating structures. The Shock and Vibration Digest, 38(1), 3–16.

    Article  Google Scholar 

  4. Chourasia, V. S., & Tiwari, A. K. (2012). Wireless data acquisition system for fetal phonocardiographic signals using BluetoothTM. International Journal of Computers in Healthcare, 1(3), 240–253.

    Article  Google Scholar 

  5. Sa-Ngasoongsong, A., Kunthong, J., Sarangan, V., Cai, X., & Bukkapatnam, S. T. (2012). A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications. Sensors, 12(8), 10851–10870.

    Article  Google Scholar 

  6. Zhang, Y., Fogoros, R., Haro, C., Dalal, Y., Brockway, M., & Siejko, K. Z. (2011). U.S. Patent No. 7,922,669. Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  7. Semmlow, J., & Rahalkar, K. (2007). Acoustic detection of coronary artery disease. Annual Review of Biomedical Engineering, 9, 449–469.

    Article  Google Scholar 

  8. Miles, R. N., & Hoy, R. R. (2006). The development of a biologically-inspired directional microphone for hearing aids. Audiology and Neurotology, 11(2), 86–94.

    Article  Google Scholar 

  9. Bertrand, A., & Moonen, M. Robust distributed noise reduction in hearing aids with external acoustic sensor nodes. EURASIP Journal on Advances in Signal Processing, 2009, 2009, 12.

    Google Scholar 

  10. Ko, W. H., Zhang, R., Huang, P., Guo, J., Ye, X., Young, D. J., & Megerian, C. A. (2009). Studies of MEMS acoustic sensors as implantable microphones for totally implantable hearing-aid systems. IEEE Transactions on Biomedical Circuits and Systems, 3(5), 277–285.

    Article  Google Scholar 

  11. Doclo, S., Gannot, S., Moonen, M., & Spriet, A. (2010). Acoustic beamforming for hearing aid applications. In Handbook on array processing and sensor networks (pp. 269–302). Hoboken: Wiley-IEEE.

    Chapter  Google Scholar 

  12. Maglogiannis, I., Loukis, E., Zafiropoulos, E., & Stasis, A. (2009). Support vectors machine-based identification of heart valve diseases using heart sounds. Computer Methods and Programs in Biomedicine, 95(1), 47–61.

    Article  Google Scholar 

  13. Hu, T., & Fei, Y. (2010). QELAR: A machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing, 9(6), 796–809.

    Article  Google Scholar 

  14. Yatani, K., & Truong, K. N. (2012, September). BodyScope: A wearable acoustic sensor for activity recognition. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing (pp. 341–350). ACM.

    Google Scholar 

  15. Palaniappan, R., Sundaraj, K., & Ahamed, N. U. (2013). Machine learning in lung sound analysis: A systematic review. Biocybernetics and Biomedical Engineering, 33(3), 129–135.

    Article  Google Scholar 

  16. Özdemir, A. T., & Barshan, B. (2014). Detecting falls with wearable sensors using machine learning techniques. Sensors, 14(6), 10691–10708.

    Article  Google Scholar 

  17. Lane, N. D., Georgiev, P., & Qendro, L. (2015, September). DeepEar: Robust smartphone audio sensing in unconstrained acoustic environments using deep learning. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 283–294). ACM.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dey, N., Ashour, A.S., Mohamed, W.S., Nguyen, N.G. (2019). Conclusion. In: Acoustic Sensors for Biomedical Applications. SpringerBriefs in Speech Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92225-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92225-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92224-9

  • Online ISBN: 978-3-319-92225-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics