Skip to main content

A Hybrid Testbed for Secure Internet-of-Things

  • Conference paper
  • First Online:
  • 498 Accesses

Abstract

The need for insertion of technology in everyday tasks has brought an increase in new methodologies and concepts used to accomplish such objectives. By trying to make technology an enabler for an increasing number of personal or work-related activities, we allow devices to collect data about our way of being, that, if not properly protected and used, can prove a vulnerability for our personal security. This is why new means of securing information, even by the tiniest or low-resource devices, need to be implemented and, in many cases, they take the form of cryptographic algorithms, classic or lightweight. Assessing these algorithms can sometimes become difficult, depending on the targeted system or on the environment where the device will be deployed. To address this issue and help developers, in this paper we present a hybrid testbed, comprised of three hardware architectures, that will ensure a general environment in which users can test their security solutions, in order to have an idea of what changes need to be made to provide optimal performances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wortmann, F., Flüchter, K.: Internet of Things - technology and value added. Bus. Inf. Syst. Eng. 57(3), 221–224 (2015)

    Article  Google Scholar 

  2. Gubbia, J., Buyyab, R., Marusica, S., Palaniswamihuang, M.: Internet of Things (IoT): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  3. Qian, L., Luo, Z., Du, Y., Guo, L.: Cloud computing: an overview, cloud computing. In: Proceedings of The First International Conference CloudCom 2009, Beijing, China, 1–4 December 2009, pp. 626–631 (2009)

    Google Scholar 

  4. Buyyaa, R., Yeoa, C.S., Venugopala, S., Broberga, J., Brandic, I.: Cloud computing and emerging IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst. 25(6), 599–616 (2009)

    Article  Google Scholar 

  5. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  7. Miorandia, D., Sicarib, S., De Pellegrinia, F., Chlamtaca, I.: Internet of Things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

    Article  Google Scholar 

  8. Botta, A., Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and Internet of Things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)

    Article  Google Scholar 

  9. Lane, N.D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Kawsar, F.: An early resource characterization of deep learning on wearables, Smartphones and Internet-of-Things devices. In: Proceedings of the 2015 International Workshop on Internet of Things Towards Applications, 01 November 2015, Seoul, South Korea (2015). https://doi.org/10.1145/2820975.2820980

  10. Ma, X., Yu, H., Wang, Y., Wang, Y.: Large-scale transportation network congestion evolution prediction using deep learning theory. PLoS ONE 10(3), e0119044 (2015). https://doi.org/10.1371/journal.pone.0119044

    Article  Google Scholar 

  11. Porter, M.E., Heppelmann, J.E.: How smart, connected products are transforming competition. Harvard Bus. Rev. 92(11), 64–88 (2014)

    Google Scholar 

  12. Weber, R.H.: Internet of Things – new security and privacy challenges. Comput. Law Secur. Rev. 26(1), 23–30 (2010)

    Article  Google Scholar 

  13. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models of cloud computing. J. Netw. Comput. Appl. 34(1), 1–11 (2011)

    Article  Google Scholar 

  14. Zissis, D., Lekkas, D.: Addressing cloud computing security issues. Future Gener. Comput. Syst. 28(3), 583–592 (2012)

    Article  Google Scholar 

  15. Sicaria, S., Rizzardia, A., Griecob, L.A., Coen-Porisini, A.: Security, privacy and trust in Internet of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)

    Article  Google Scholar 

  16. Yana, Z., Zhangc, P., Vasilakos, A.V.: A survey on trust management for Internet of Things. J. Netw. Comput. Appl. 42, 120–134 (2014)

    Article  Google Scholar 

  17. Romana, R., Zhoua, J., Lopezb, J.: On the features and challenges of security and privacy in distributed Internet of Things. Comput. Netw. 57(10), 2266–2279 (2013)

    Article  Google Scholar 

  18. Poschmann, A.Y.: Lightweight cryptography: cryptographic engineering for a pervasive world. Ph.D. thesis (2009)

    Google Scholar 

  19. Masanobu, K., Moriai, S.: Lightweight cryptography for the Internet of Things. Sony Corporation (2008). https://pdfs.semanticscholar.org/9595/b5b8db9777d5795625886418d38864f78bb3.pdf

  20. Manifavas, C., Hatzivasilis, G., Fysarakis, K., Rantos, K.: Lightweight cryptography for embedded systems – a comparative analysis. In: Garcia-Alfaro, J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, William M. (eds.) DPM/SETOP -2013. LNCS, vol. 8247, pp. 333–349. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54568-9_21

    Chapter  Google Scholar 

  21. Arseni, S., Mițoi, M., Vulpe, A.: PASS-IoT: a platform for studying security, privacy and trust in IoT. In: 11th International Conference on Communications (COMM 2016), Bucharest, Romania, 9–11 June 2016 (2016). ISBN: 978-1-4673-8196-3

    Google Scholar 

  22. Eisenbarth, T., Sandeep, K.: A survey of lightweight-cryptography implementations. IEEE Des. Test Comput. 24(6), 222–533 (2007)

    Article  Google Scholar 

  23. Panasayya, Y., Kaps, J.-P.: Lightweight cryptography for FPGAs. In: 2009 Proceedings of International Conference on Reconfigurable Computing and FPGAs, ReConFig 2009, pp. 225–230. IEEE (2009)

    Google Scholar 

  24. Cédric, H., Kamel, D., Regazzoni, F., Legat, J.-D., Flandre, D., Bol, D., Standaert, F.-X.: Harvesting the potential of nano-CMOS for lightweight cryptography: an ultra-low- voltage 65 nm AES coprocessor for passive RFID tags. J. Cryptograph. Eng. 1(1), 79–86 (2011)

    Article  Google Scholar 

  25. Aydin, A., Gulcan, E., Schaumont, P.: SIMON says: break area records of block ciphers on FPGAs. IEEE Embed. Syst. Lett. 6(2), 37–40 (2014)

    Article  Google Scholar 

  26. Vivek, V., Shila, D.M.: High throughput implementations of cryptography algorithms on GPU and FPGA. In: 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 723–727. IEEE (2013)

    Google Scholar 

  27. Vulpe, A., Arseni, Ş.-C., Marcu, I., Voicu, C., Fratu, O.: Building a unified middleware architecture for security in IoT. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 570, pp. 105–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56538-5_11

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by University “Politehnica” of Bucharest, through the “Excellence Research Grants” Program, UPB – GEX, Identifier: UPB–EXCELENTA–2016, project “Platform for Studying Security in IoT”, contract number 96/2016 (PaSS-IoT) and by a grant of the Ministry of Innovation and Research, UEFISCDI, project number 5 Sol/2017 within PNCDI III and partially funded by UEFISCDI Romania under grant no. 60BG/2016 “Intelligent communications system based on integrated infrastructure, with dynamic display and alerting - SICIAD”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ștefan-Ciprian Arseni or Alexandru Vulpe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arseni, ȘC., Vulpe, A., Halunga, S., Fratu, O. (2018). A Hybrid Testbed for Secure Internet-of-Things. In: Fratu, O., Militaru, N., Halunga, S. (eds) Future Access Enablers for Ubiquitous and Intelligent Infrastructures. FABULOUS 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 241. Springer, Cham. https://doi.org/10.1007/978-3-319-92213-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92213-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92212-6

  • Online ISBN: 978-3-319-92213-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics