Part of the Undergraduate Lecture Notes in Physics book series (ULNP)


In this chapter, we will find out how we can apply quantum mechanics to more than one system. In doing so, we encounter what is truly strange in quantum mechanics, namely entanglement. We also explore some of the more shocking applications of quantum mechanics, including teleportation and quantum computing.

Supplementary material (1.3 mb)
Supplementary material 1: Constructing states for composite systems (zip 1294 KB) (1.1 mb)
Supplementary material 2: Creating classical correlations (zip 1134 KB) (640 kb)
Supplementary material 3: Creating quantum correlations (zip 639 KB) (213 kb)
Supplementary material 4: Cartoon of a teleportation machine (zip 213 KB) (368 kb)
Supplementary material 5: Inside the teleportation machine (zip 367 KB) (452 kb)
Supplementary material 6: Deutsch’ algorithm in circuit form, with the Hadamard operators H1 and H2, and the single function call Uf (zip 451 KB)


  1. C.H. Bennett et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefGoogle Scholar
  2. D. Deutsch, R. Jozsa, Rapid solutions of problems by quantum computation. Proc. Roy. Soc. A; London 439, 553 (1992)Google Scholar
  3. D. Deutsch, Quantum computational networks. Proc. Roy. Soc. A; London 425, 73 (1989)ADSMathSciNetCrossRefGoogle Scholar
  4. R. Feynman, Lectures on Physics, vol. I (Addison–Wesley, USA, 1963), pp. 37–42Google Scholar
  5. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of SheffieldSheffieldUK

Personalised recommendations