Advertisement

Proof of Theorem 1.1(b)

  • Joan C. Artés
  • Jaume Llibre
  • Alex C. Rezende
Chapter
  • 225 Downloads

Abstract

In the previous chapter we have produced all the topologically possible phase portraits for structurally unstable quadratic systems of codimension one. And from them, we have already discarded some that are not realizable for several reasons. Moreover, there are some skeletons of separatrices from Family D that give rise to two different phase portraits according to the different stability that a focus may have. We will collect these cases under the label “dual D’s”. The data may be summarized in the next table.

References

  1. 5.
    J.C. Artés, J. Llibre, Statistical measure of quadratic systems. Resenhas 6, 85–97 (2003)MathSciNetzbMATHGoogle Scholar
  2. 6.
    J.C. Artés, R. Kooij, J. Llibre, Structurally stable quadratic vector fields. Mem. Am. Math. Soc. 134(639), viii+108 (1998)MathSciNetCrossRefGoogle Scholar
  3. 7.
    J.C. Artés, J. Llibre, D. Schlomiuk, Quadratic vector fields with a weak focus of second order. Int. J. Bifurcation Chaos 16, 3127–3194 (2006)CrossRefGoogle Scholar
  4. 8.
    J.C. Artés, J. Llibre, J.C. Medrado, Nonexistence of limit cycles for a class of structurally stable quadratic vector fields. Discrete Contin. Dyn. Syst. 17, 259–271 (2007)MathSciNetzbMATHGoogle Scholar
  5. 9.
    J.C. Artés, J. Llibre, D. Schlomiuk, The geometry of quadratic polynomial differential systems with a weak focus and an invariant straight line. Int. J. Bifurcation Chaos 20, 3627–3662 (2010)MathSciNetCrossRefGoogle Scholar
  6. 10.
    J.C. Artés, A.C. Rezende, R.D.S. Oliveira, The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node (a, b). Int. J. Bifurcation Chaos 24, 30 (2014)MathSciNetCrossRefGoogle Scholar
  7. 11.
    J.C. Artés, A.C. Rezende, R.D.S. Oliveira, The geometry of quadratic polynomial differential systems with a finite and an infinite saddle-node (c). Int. J. Bifurcation Chaos 25, 111 (2015)MathSciNetCrossRefGoogle Scholar
  8. 12.
    R.I. Bogdanov, Versal deformation of a singularity of a vector field on the plane in the case of zero eigenvalues. Seminar Petrovski 1976 (Russian). Sel. Math. Soviet. 1, 329–421 (1981)Google Scholar
  9. 14.
    G.F.D. Duff, Limit cycles and rotated vector fields. Ann. Math. 57, 15–31 (1953)MathSciNetCrossRefGoogle Scholar
  10. 17.
    F. Dumortier, J. Llibre, J.C. Artés, Qualitative Theory of Planar Differential Systems. Universitext (Springer, Berlin, 2006)zbMATHGoogle Scholar
  11. 21.
    X. Huang, J.W. Reyn, Separatrix configurations of quadratic systems with finite multiplicity three and a \(m^0_{1,1}\) type of critical point at infinity. Report 95–115:1–38, Faculty of Technical Mathematics and Informatics, Delft University of Technology, 1995Google Scholar
  12. 23.
    P. Jager, Phase portraits for quadratics systems with a higher order singularity with two zero eigenvalues. J. Differ. Equ. 87, 169–204 (1990)MathSciNetCrossRefGoogle Scholar
  13. 24.
    Y.A. Kuznetsov, Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112, 2nd edn. (Springer, New York, 1998)Google Scholar
  14. 30.
    J.W. Reyn, Phase portraits of a quadratic system of differential equations occurring frequently in applications. Nieuw Archief voor Wiskunde (4) 5(2), 107–155 (1987)Google Scholar
  15. 33.
    J.W. Reyn, Phase Portraits of Planar Quadratic Systems. Mathematics and Its Applications Edition, vol. 583 (Springer, New York, 2007)Google Scholar
  16. 41.
    F. Takens, Forced oscillations and bifurcations, in Applications of Global Analysis I, Communications of the Mathematical Institute Rijksuniversiteit Utrecht, vol. 3 (1974), pp. 1–60Google Scholar
  17. 43.
    C. Xiang-Yan, Applications of the theory of rotated vector fields i. Nanjing Daxue Xuebao (Math.) 1, 19–25 (1963)Google Scholar
  18. 44.
    C. Xiang-Yan, Applications of the theory of rotated vector fields ii. Nanjing Daxue Xuebao (Math.) 2, 43–50 (1963)Google Scholar
  19. 45.
    C. Xiang-Yan, On generalized rotated vector fields. Nanjing Daxue Xuebao (Nat. Sci.) 1, 100–108 (1975)Google Scholar
  20. 46.
    A. Zegeling, Quadratic systems with three saddles and one antisaddle. Delft University of Technology, 80 (1989)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joan C. Artés
    • 1
  • Jaume Llibre
    • 1
  • Alex C. Rezende
    • 1
  1. 1.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaCerdanyolaSpain

Personalised recommendations