Advertisement

Preliminary Definitions

  • Joan C. Artés
  • Jaume Llibre
  • Alex C. Rezende
Chapter
  • 220 Downloads

Abstract

In this chapter we introduce some notation and definitions that we will need later on.

Keywords

Infinite Singular Points Polynomial Vector Fields Saddle Node Topological Coefficient Diagonal Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, Qualitative Theory of Second-Order Dynamic Systems. Israel Program for Scientific Translations (Halsted Press (A division of John Wiley & Sons), New York, 1973)Google Scholar
  2. 2.
    A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, Theory of Bifurcation of Dynamic Systems on a Plane. Israel Program for Scientific Translations (Halsted Press (A division of John Wiley & Sons), New York, 1973)Google Scholar
  3. 16.
    F. Dumortier, D.S. Shafer, Restrictions on the equivalence homeomorphism in stability of polynomial vector fields. J. Lond. Math. Soc. 41, 100–108 (1990)MathSciNetCrossRefGoogle Scholar
  4. 17.
    F. Dumortier, J. Llibre, J.C. Artés, Qualitative Theory of Planar Differential Systems. Universitext (Springer, Berlin, 2006)zbMATHGoogle Scholar
  5. 19.
    E.A.V. Gonzales, Generic properties of polynomial vector fields at infinity. Trans. Am. Math. Soc. 143, 201–222 (1969)MathSciNetCrossRefGoogle Scholar
  6. 20.
    M. Hirsch, Differential Topology (Springer, Berlin, 1976)CrossRefGoogle Scholar
  7. 26.
    L. Markus, Quadratic differential equations and non–associative algebras. Ann. Math. Stud. 45, 185–213 (1960)MathSciNetzbMATHGoogle Scholar
  8. 27.
    D. Neumann, Classification of continuous flows on 2-manifolds. Proc. Am. Math. Soc. 48, 73–81 (1975)MathSciNetCrossRefGoogle Scholar
  9. 28.
    M.M. Peixoto, Structural stability on two-dimensional manifolds. Topology 1, 101–120 (1962)MathSciNetCrossRefGoogle Scholar
  10. 38.
    J. Sotomayor, Curvas definidas por equações diferenciais no plano (Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1979)Google Scholar
  11. 39.
    J. Sotomayor, Lições de equações diferenciais ordinárias. Euclid Project, vol. 11 (Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1979)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joan C. Artés
    • 1
  • Jaume Llibre
    • 1
  • Alex C. Rezende
    • 1
  1. 1.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaCerdanyolaSpain

Personalised recommendations