Skip to main content

Posture and Motion of the Cervical Spine

  • Chapter
  • First Online:
Book cover Head and Neck
  • 838 Accesses

Abstract

Despite the still expanding research on the cervical spine, an explanation of the newborn cervical spine, of the mature head and neck motions, and of the biomechanical cause(s) of whiplash are incomplete. Presumably, this is due to the lack of notion of the interrelated anatomy of the constituting structures, to restricted studies on motion functions of the individual segmental and blocks of cervical vertebrae. The achondroplastic craniocervical junction is treated. The genetic research clarified the cartilage–bone development that presumably will ameliorate the development of achondroplastic children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afsharpaiman S, Saburi A, Waters KA (2013) Respiratory difficulties and breathing disorders in achondroplasia. Pediatr Resp Rev 14:250–255

    CAS  Google Scholar 

  • Anderst WJ, Donaldson WF, Lee JY, Kang JD (2015) Cervical motion segment contributions to head motion during flexion\extension, lateral bending, and axial rotation. Spine J 15:2538–2543

    Article  Google Scholar 

  • Aoyama H, Asamoto K (2000) The developmental fate of the rostral/caudal half of a somite for vertebra and rib formation: experimental conformation of the resegmentation theory using chick-quail chimeras. Mechan Dev 99:71–82

    Article  CAS  Google Scholar 

  • Arnold P, Forterre F, Lang J, Fischer MS (2016) Morphological disparity, conservatism, and integration in the canine lower cervical spine: Insights into mammalian neck function and regionalization. Mammal Biol 81:153–162

    Article  Google Scholar 

  • Baljet B (2000) The painted Amsterdam anatomy lessons: anatomy performances in dissecting rooms? Ann Anat 182:3–11

    Article  CAS  Google Scholar 

  • Bell KM, Yan Y, Debski RE, Sowa GA, Kang JD, Tashman S (2016) Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine. J Biomech 49:167–172

    Article  Google Scholar 

  • Bernsmeier A, Schrader A, Struppler A (1984) Differentialdiagnose neurologischer Krankheitsbilder, 4th edn. Georg Thieme Verlag, Stuttgart, NY

    Google Scholar 

  • Bolk L (1918) Hersenen en cultuur. Scheltema & Holkema’s Uitgeverij, Amsterdam

    Google Scholar 

  • Bolk L (1929) Origin of racial characteristics in man. Am J Phys Anthropol 13:1–28

    Article  Google Scholar 

  • Braus H (1929) Anatomie des Menschen, vol I. Bewegungsapparat. J, Springer, Berlin

    Google Scholar 

  • Brigandt I (2006) Homology and heterochrony: the evolutionary embryologist Gavin Rylands de Beer (1899–1972). J Exp Zool 306B:317–328

    Article  Google Scholar 

  • Brouwer PA, Lubout CM, van Dijk JM, Vleggeert-Lankamp CL (2012) Cervical high-intensity intramedullary lesions in achondroplasia: Aetiology, prevalence and clinical relevance. Eur Radiol. https://doi.org/10.1007/s00330-012-2488-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Brumovsky PR, Gebhart GF (2010) Visceral organ cross-sensitization- an integrated perspective. Auton Neurosci Basic Clin 153:106–115

    Article  CAS  Google Scholar 

  • Cain CMJ, Ryan GA, Fraser R, Potter G, McLean AJ, McCaul K, Simpson DA (1989) Cervical spine injuries in road traffic crashes in South Australia, 1981–1986. Austr NZ J Surg 59:15–19

    Article  CAS  Google Scholar 

  • Cairns BE, Arendt-Nielsen L, Sacerdote P (2015) Perspectives in pain research 2014: neuroinflammation and glial cell activation: the cause of transition from acute to chronic pain? Scand J Pain 6:3–6

    Article  Google Scholar 

  • Christ B, Huang R, Scaal M (2004) Formation and differentiation of the avian sclerotome. Anat Embryol 208:333–350

    Article  Google Scholar 

  • Christ B, Wilting J (1992) From somites to vertebral column. Ann Anat 174:23–32

    Article  CAS  Google Scholar 

  • Coin CG, Malkasian DR (1971) Clivus. Radiol of the skull brain I:348

    Google Scholar 

  • van Dijk JMC, Lubout CMA, Brouwer PA (2007) Cervical high-intensity intramedullary lesions without spinal cord compression in achondroplasia. J Neurosurg Spine 6:304–308

    Article  Google Scholar 

  • Ednik M, Tinkle BT, Phromchairak J, Egelhoff J, Amin R, Simakajornboon N (2009) Sleep related respiratory abnormalities and arousal pattern in achondroplasia in early infancy. J Pediatr 155:510–515

    Article  Google Scholar 

  • Fouquet B, Doury-Planchout F (2013) Whiplash: actualités Revue rhumat monograph 80:67–71

    Google Scholar 

  • van Hee R, Lowis S (2006) David Van Mauden (±1538–±1597), “Sworn medical Doctor and surgical Prelector of Antwerp”, and his Book on Anatomy. Acta Chir Belg 106:130–135

    Article  Google Scholar 

  • Hecht JT, Nelson FW, Butler IJ, Horton WA, Scott CI jr, Wassman ER, Mehringer CM, Rimoin DL, Pauli RM (1985) Computerized tomography of the foramen magnum: achondroplastic values compared to normal standards. AM J Med Genet 20:355–360

    Article  CAS  Google Scholar 

  • Hecht JT, Francomano CA, Horton WA, Annegers JF (1987) Mortality in achondroplasia. Am J Hum Genet 41:454–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht JT, Horton WA, Reid CS, Pyeritz RE, Chakraborty R (1989) Growth of the foramen magnum in achondroplasia. Am J Med Genet 32:528–535

    Article  CAS  Google Scholar 

  • His W (1886) Untersuchungen über die erste Anlage des Wirbeltierleibes. Die erste Entwicklung des Hünnchens Ei, Vogel, Leipzig

    Google Scholar 

  • Hlavenka TM, Christner VFK, Gregory DE (2017) Neck posture during lifting and its effect on trunk muscle activation and lumbar spine posture. Appl Ergonom 62:28–33

    Article  Google Scholar 

  • Horton WA, Hall JG, Hecht JT (2007) Achondroplasia. Lancet 370:162–172

    Article  CAS  Google Scholar 

  • Huizink AC (2014) Prenatal cannabis exposure and infant outcomes: Overview of studies. Progr Neuro-Psychopharmacol Biol Psych 52:45–52

    Article  CAS  Google Scholar 

  • Klag KA (2015) Horton WA (2015) Advances in treatment of achondroplasia and osteoarthritis. Hum Mol Genet. https://doi.org/10.1093/hmg/ddv419

    Article  PubMed  Google Scholar 

  • Kranenburg HA, Schmitt MA, Puentedura EJ, Luijckx GJ (2017) Adverse events associated with the use of cervical spine manipulation or mobilization and patients characteristics: a systematic review. Musculoskelet Sci Pract 28:32–38

    Article  CAS  Google Scholar 

  • Kölliker A (1859) Ueber die Beziehungen der Chorda dorsalis zur Bildung der Wirbel der Selachier und einiger anderer Fische. Verh Phys Med Ges Würzburg X:193-242

    Google Scholar 

  • Latini G, De Felice G, Parrini S, Verrotti M, Di Maggio G, Petraglia F (2002) Polyhydramnios: a predictor of severe growth impairment in achondroplasia. J Pediatr 141:274–276

    Article  Google Scholar 

  • Leijten JC, Bos SD, Landman EB, Georgi N, Jahr H, Meulenbelt I, Post JN, van Blitterswijk CA, Karperien M (2013) GREM1, FRZB and DKK1 mRNA levels correlate with osteoarthritis and are regulated by osteoarthritis-associated factors. Arthritis Res Ther 19. https://doi.org/10.1186/ar4306

    Article  Google Scholar 

  • Leijten JC, Emons J, Sticht C, van Gool S, Decker E, Uitterlinden A, Rappold G, Hofman A, Rivadeneira F, Scherjon S, Wit JM, van Meurs J, van Blitterswijk CA, Karperien M (2012a) Gremlin 1, frizzled-related protein, and Dkk-1 are key regulators of human articular cartilage homeostasis. Arthritis Rheum 64:3302–3312. https://doi.org/10.1002/art.34535

    Article  CAS  PubMed  Google Scholar 

  • Leijten JC, Moreira Teixeira LS, Landman EB, van Blitterswijk CA, Karperien M (2012b) Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae. PLoS ONE 7:e49896. https://doi.org/10.1371/journal.pone.0049896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroi AM (2005) Mutants. On genetic variety and the human body. Penguin Books, London

    Google Scholar 

  • Lieberman DE (2011) The evolution of the human head. Belknap Press, Harvard University Press, London

    Google Scholar 

  • Lin C-C, Lu T-W, Wang T-M, Hsu C-Y, Hsu S-J, Shih T-F (2014) In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach. J Biomech 47:3310–3317

    Article  Google Scholar 

  • Marani E, Koch WFRM (2014) The Pelvis, structure, gender and society. Springer, Heidelberg

    Google Scholar 

  • Marani E (2016) Dorsal root or spinal ganglion neurosci biobehav psychol: NRSM 04160

    Google Scholar 

  • Mao H, Driscoll SJ, Li J-S, Li G, Wood KB, Cha TD (2015) Dimensional changes of the neuroforamina in subaxial cervical spine during in vivo dynamic flexion-extension. https://doi.org/doi.org/10.1016/j.spinee.2015.11.052

    Article  Google Scholar 

  • Mauden van D (1647) Bedienighe der anatomien. Amsterdam Danckertsz, Folio’s 53–54 (first edition 1583 by Christophe Plantin)

    Google Scholar 

  • Mazzara JT, Fielding JW (1988) Effect of C1–C2 rotation on canal size. Clin Orthop Relat Res 237:115–119

    Google Scholar 

  • McKenzie JA, Williams JF (1971) The dynamic behavior of the head and cervical spine during whiplash. J Biomech 4:447–490

    Article  Google Scholar 

  • McRay DL (1960) The significance of abnormalities in the cervical spine. Am J Roentgenol 84:3–25

    Google Scholar 

  • Middelkoop N (1994a) Rembrandt‘s anatomische les van Dr. Deijman. Ned Tijdschr Geneesk 138:2614–2618

    CAS  Google Scholar 

  • Middelkoop N (1994b) De anatomische les van Dr.Deijman. Amsterdams Historisch Museum (ISBN 90-71361-06-3)

    Google Scholar 

  • Minkowski M (1921) Sur les mouvements, les réflexes et les réactions musculaires du fœtus humain de 2 à 5 mois et leur relations avec le système nerveux fœtal. Revue Neurol 37(1105–1118):1235–1250

    Google Scholar 

  • Mongula JE (2007) Bepaling van de stijfheden van de wervelkolom en romp. Master assignment: BW-229/BMT-021, University Twente

    Google Scholar 

  • Moosa S, Wollnik B (2015) Altered FGRF signalling in congenital craniofacial and skeletal disorders. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2015.12.005

    Article  PubMed  Google Scholar 

  • Pang D, Thompson DNP (2014) Embryology, classification and surgical management of bony malformations of the cranio-vertebral junction. In: Di Rocco C, Aklan N (eds) Pediatric cranio-vertebral junction diseases. Advances in technical standards in neurosurgery, vol 40. Springer Cham, Heidelberg

    Google Scholar 

  • Panjabi MM (2006) A hypothesis of chronic back pain: ligament sub-failure injuries lead to muscle control dysfunction. Eur Spine J 15:668–676

    Article  Google Scholar 

  • Poppel MH, Jacobson HG, Duff BK (1953) Basilar impression and platybasia in Paget’s disease. Radiol 61:639–644

    Article  CAS  Google Scholar 

  • Portero R, Quaine F, Cahouet V, Thoumie P (2013) Musculo-tendinous stiffness of head-neck segment in the sagittal plane: an optimization approach for modelling the cervical spine as a single-joint system. J Biomech 46:925–930

    Article  Google Scholar 

  • Prechtl H (1977) The neurological examination of the full-term newborn infant. Clinics in developmental medicine, 2nd ed, no 63, pp 1–68

    Google Scholar 

  • Reina V, Baujat G, Fauroux B, Couloigner V, Boulanger E, Sainte-Rose C, Maroteaux P, Le Merrer M, Cormier-Daire V, Legai-Mallet L, Zerah M, Di Rocco F (2014) Craniovertebral junction anomalies in achondroplastic children. In: Di Rocco C and Akalan N (eds) Pediatric craniovertebral junction diseases. Adv technical Standards Neurosurgery, vol 40. 295–312

    Google Scholar 

  • Remak R (1855) Untersuchungen über die Entwicklung der Wirbeltiere. Reimer, Berlin

    Google Scholar 

  • Romer AS (1962) The vertebrate body. W.B.Saunders Co, Philadelphia, London

    Google Scholar 

  • Rössler G, Schmeisser A (1957) Die alternsabhängige Beweglichkeitsverminderung der Halswirbelsäule. Z Alternforsch 11:75–80

    Google Scholar 

  • Rothman RH, Simeone FA (1982) The Spine. W.B.Saunders Co., Philadelphia

    Google Scholar 

  • Scaal M (2016) Early development of the vertebral column. Siminars Cell Dev Biol 49:83–91

    Article  Google Scholar 

  • Schivo S, Post JN (2016) Computational modelling of complex protein activity networks. In: Prigent C (ed) Protein phosphorylation. Biochemistry, genetics and molecular biology. https://doi.org/10.5772/intechopen.69804

    Google Scholar 

  • Schivo S, Scholma J, van der Vet PE, Karperien M, Post JN, van de Pol J, Langerak R (2016a) Modelling with ANIMO: between fuzzy logic and differential equations. BMC Systems Biology/BMC series. https://doi.org/10.1186/s12918-016-0286-z

  • Schivo S, Scholma J, Huang X, Zhong L, van de Pol J, Karperien M, Langerak R, Post JN (2016b) An echo in biology II: Insights in chondrocyte cell fate. Abstr Osteoarthr Cartil 24:S176

    Article  Google Scholar 

  • Scholma J, Schivo S, Karperien M, Langerak L, van de Pol J, Post JN (2014) An echo in biology: validating the executable chondrocyte. Abstr Osteoarthr Cartil 22:S157

    Article  Google Scholar 

  • Seacrist T, Saffioti J, Balasubramanian S, Kadlowec J, Sterner R, García-España JF, Arbogast KB, Maltese MR (2012) Passive cervical spine flexion: the effect of age and gender. Clin Biomech 27:326–333

    Article  Google Scholar 

  • Siegmund GP, Winkelstein BA, Ivancic PC, Svensson MY, Vasavada A (2009) The anatomy and biomechanics of acute and chronic whiplash injury. Traffic Inj. Prev. 10:101–112

    Article  Google Scholar 

  • Six J (1905) De ligging van het lijk in Rembrandt’s anatomische les van Dr. Deijman. Oud Holland 23(1):37–40

    Article  Google Scholar 

  • Skillgate E, Côte´P, Cassidy JD, Boyle E, Carroll L, Holm LW (2016) Effect of early intensive care on recovery from whiplash-associated disorders: Results of a population-based cohort study. Arch Physic Med Rehabil 97:739–46

    Article  Google Scholar 

  • Stempera BD, Yoganandana N, Pintar FA (2003) Gender dependent cervical spine segmental kinematics during whiplash. J Biomech 36:1281–1289

    Article  Google Scholar 

  • Strimpakos N (2011) The assessment of the cervical spine. Part I: range of motion and proprioception. J Bodyw Mov Ther 15:114–124

    Article  Google Scholar 

  • Styrke J, Stalnacke BM, Bylund PO, Sojka P, Bjornstig U (2012) A 10-year incidence of acute whiplash injuries after road traffic crashes in a defined population in northern Sweden. PMR 4:739–747

    Article  Google Scholar 

  • Svensson MY, Aldman B, Hansson HA, Lövsund P, Seeman T, Suneson A,Örtengren T (1993) Pressure effects in the spinal canal during whiplash extension motion a possible cause of injury to the cervical spinal ganglia. In: International Research Council on the Biomechanics of Injury. Eindhoven, Netherlands, pp 189200

    Google Scholar 

  • Swartz EE, Floyd RT, Cendoma M (2005) Cervical Spine functional anatomy and the biomechanics of injury due to compressive loading. J Athlet Train 40:155–161

    Google Scholar 

  • Takahashi Y, Yasuhiko Y, Takahashi J, Takada S, Johnson RL, Saga Y, Kanno J (2013) Metameric pattern of intervertebral disc/vertebral body is generated independently of Mesp2/Ripply-mediated rostro-caudal patterning of somites in the mouse embryo. Dev Biol 380:172–184

    Article  CAS  Google Scholar 

  • Thomeer RTWM (1982) Achondroplasia. Management of neurological complications. Thesis, University of Leiden

    Google Scholar 

  • Trehub SE, Corter CM, Shosenberg N (1983) Neonatal reflexes:A search for lateral asymmetries. In: Young G et al (eds) Manual specialization and the developing brain. Academic Press, NY

    Google Scholar 

  • Ueda K, Yamanaka Y, Harada D, Yamagami E, Tanaka H, Seino Y (2007) PTH has the potential to rescue disturbed bone growth in achondroplasia. Bone 41:13–18

    Article  CAS  Google Scholar 

  • Ulbrich EJ, Anon J, Hodler J, Zimmermann H, Sturzenegger M, Anderson SE, Boesch C (2014) Does normalized signal intensity of cervical discs on T2 weighted MRI images change in whiplash patients? Injury, Int J Care Injured 45:784–791

    Article  Google Scholar 

  • Van der Meer J, van ‘t Laar (2001) Anamnese en lichamelijk onderzoek. Elsevier Gezondheidszorg, Maarssen

    Google Scholar 

  • Van Mamaeren H (1988) Motion patterns in the cervical spine. Thesis University Maastricht

    Google Scholar 

  • Verbout AJ (1985) The development of the vertebral column. Adv Anat Embryol Cell Biol 90:1–122

    Article  CAS  Google Scholar 

  • Verbout AJ (1976) A critical review of the “Neugliederung” concept in relation to the development of the vertebral column. Acta Biotheor [Leiden] 25:219–258

    Article  CAS  Google Scholar 

  • Wang H, Rosenbaum AE, Reid CS, Zinreich SJ, Pyeritz RE (1987) Pediatric patients with achondroplasia : CT evaluation of the craniocervical junction. Radiology 164:515–519

    Article  CAS  Google Scholar 

  • Waters-Rits AL, Hoogland MLP (2013) Osteological evidence of short-limbed dwarfism in a nineteenth century Dutch family: achondroplasia or hypochondroplasia. Int J Paleont 3:243–256

    Google Scholar 

  • Willemse J (1961) De motoriek van de pasgeborene in de eerste levensuren. Uitg. Erven J Bijleveld, Utrecht

    Google Scholar 

  • Wong JJ, Shearer HM, Mior S, Jacobs C, Côté P, Randhawa K, Yu H, Southerst D, Varatharajan S, Sutton D, van der Velde G, Carroll LJ, Ameis A, Ammendolia C, Brison R, Nordin M, Stupar M, Taylor-Vaisey A (2015) Are manual therapies, passive physical modalities, or acupuncture effective for the management of patients with whiplash-associated disorders or neck pain and associated disorders? An update of the Bone and Joint Decade Task Force on Neck Pain and its Associated Disorders by the OPTIMa Collaboration. SPINEE 56530. https://doi.org/10.1016/j.spinee.2015.08.024

    Article  Google Scholar 

  • Yeung E (1996) Whiplash injuries of the cervical spine. The relationship between mechanism of injury and neural tissue involvement. Physiotherapy 82:286–290

    Article  Google Scholar 

  • Yao H-D, Svensson MY, Nilsson H (2016) Transient pressure changes in the vertebral canal durin whiplash motion. A hydrodynamic modelling approach. J Biomech 49:416–422

    Article  Google Scholar 

  • Yoganandan N, Haffner M, Maiman DJ, Nichols H. Pinter FA, Jentzen J, Weinshei SS, Larson SJ, Sances A (1989) Epidemiology and injury biomechanics of motor vehicle related trauma to the human spine. In: Proceedings of Stapp Car Crash Conference, Society of Automotive Engineers, Warrendale USA pp 223–242

    Google Scholar 

  • Yoganandan N, Umale S, Stemper B, Snyder B (2017) Fatigue responses of the human cervical spine intervertebral discs. J mech Behav Biomed Mat 69:30–38

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marani, E., Heida, C. (2018). Posture and Motion of the Cervical Spine. In: Head and Neck. Springer, Cham. https://doi.org/10.1007/978-3-319-92105-1_10

Download citation

Publish with us

Policies and ethics