Skip to main content

Optimal Power Allocation for Downlink NOMA Systems

  • Chapter
  • First Online:
Multiple Access Techniques for 5G Wireless Networks and Beyond

Abstract

Non-orthogonal multiple access (NOMA) has been recognized as a promising multi-user access technique for the next generation cellular communication networks. In this chapter, we first review the basic concepts of downlink NOMA transmission and introduce the two-user, multi-user, and multi-channel NOMA schemes. Then, we investigate the optimal power allocation for these downlink NOMA schemes under different performance criteria, including the maximin fairness, sum rate, and energy efficiency. User weights and quality-of-service (QoS) constraints are taken into account. We show that in most cases the optimal NOMA power allocation can be analytically characterized, while in other cases the NOMA power allocation problems can be numerically solved via convex optimization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For multi-cell NOMA, the reader is referred to [11].

References

  1. J.G. Andrews, S. Buzzi, W. Choi, S.V. Hanly, A. Lozano, A.C. Soong, J.C. Zhang, What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)

    Article  Google Scholar 

  2. V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow, M. Sternad, R. Apelfrojd, T. Svensson, The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Commun. Mag. 52(5), 44–51 (2014)

    Google Scholar 

  3. M. Xiao, S. Mumtaz, Y. Huang, L. Dai, Y. Li, M. Matthaiou, G.K. Karagiannidis, E. Bjrnson, K. Yang, I. Chih-Lin, A. Ghosh, Millimeter wave communications for future mobile networks. IEEE J. Sel. Areas Commun. 35(9), 1909–1935 (2017)

    Google Scholar 

  4. J.G. Andrews, H. Claussen, M. Dohler, S. Rangan, M.C. Reed, Femtocells: past, present, and future. IEEE J. Sel. Areas Commun. 30(3), 497–508 (2012)

    Article  Google Scholar 

  5. J. Wang, W. Guan, Y. Huang, R. Schober, X. You, Distributed optimization of hierarchical small cell networks: a GNEP framework. IEEE J. Sel. Areas Commun. 35(2), 249–264 (2017)

    Google Scholar 

  6. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi, Non-orthogonal multiple access (NOMA) for cellular future radio access, in Proceeding of IEEE Vehicular Technology Conference (VTC Spring) Dresden, Germany, June 2013, pp. 1–5

    Google Scholar 

  7. Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, H.V. Poor, Application of non-orthogonal multiple access in LTE and 5G networks, IEEE Commun. Mag. 55(2), 185–191 (2017)

    Google Scholar 

  8. L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, Z. Wang, Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag. 53(9), 74–81 (2015)

    Article  Google Scholar 

  9. Z. Ding, R. Schober, H.V. Poor, A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Trans. Wirel. Commun. 15(6), 4438–4454 (2016)

    Article  Google Scholar 

  10. Z. Ding, F. Adachi, H.V. Poor, The application of MIMO to non-orthogonal multiple access. IEEE Trans. Wirel. Commun. 15(1), 537–552 (2016)

    Article  Google Scholar 

  11. W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, Non-orthogonal multiple access in multi-cell networks: theory, performance, and practical challenges. IEEE Commun. Mag. 55(10), 176–183 (2017)

    Article  Google Scholar 

  12. X. Zhang, Q. Gao, C. Gong, Z. Xu, User grouping and power allocation for NOMA visible light communication multi-cell networks. IEEE Commun. Lett. 21(4), 777–780 (2017)

    Article  Google Scholar 

  13. Y. Huang, C. Zhang, J. Wang, Y. Jing, L. Yang, X. You, Signal processing for MIMO-NOMA: present and future challenges. IEEE Wirel. Commun. 25(2), 32–38 (2018)

    Google Scholar 

  14. L. Zhang, M. Xiao, G. Wu, M. Alam, Y.C. Liang, S. Li, A survey of advanced techniques for spectrum sharing in 5G networks. IEEE Wirel. Commun. 24(5), 44–51 (2017)

    Article  Google Scholar 

  15. C.-L. Wang, J.-Y. Chen, Y.-J. Chen, Power allocation for a downlink non-orthogonal multiple access system. IEEE Wirel. Commun. Lett. 5(5), 532–535 (2016)

    Article  Google Scholar 

  16. Z. Yang, Z. Ding, P. Fan, N. Al-Dhahir, A general power allocation scheme to guarantee quality of service in downlink and uplink NOMA systems. IEEE Trans. Wirel. Commun. 15(11), 7244–7257 (2016)

    Article  Google Scholar 

  17. J. Wang, Q. Peng, Y. Huang, H.M. Wang, X. You, Convexity of weighted sum rate maximization in NOMA systems. IEEE Signal Process. Lett. 24(9), 1323–1327 (2017)

    Article  Google Scholar 

  18. J. Choi, Power allocation for max-sum rate and max-min rate proportional fairness in NOMA. IEEE Commun. Lett. 20(10), 2055–2058 (2016)

    Article  Google Scholar 

  19. J. Cui, Z. Ding, P. Fan, A novel power allocation scheme under outage constraints in NOMA systems. IEEE Signal Process. Lett. 23(9), 1226–1230 (2016)

    Article  Google Scholar 

  20. S. Timotheou, I. Krikidis, Fairness for non-orthogonal multiple access in 5G systems. IEEE Signal Process. Lett. 22(10), 1647–1651 (2015)

    Article  Google Scholar 

  21. Y. Zhang, H.M. Wang, T.X. Zheng, Q. Yang, Energy-efficient transmission design in non-orthogonal multiple access. IEEE Trans. Veh. Technol. 66(3), 2852–2857 (2017)

    Article  Google Scholar 

  22. J. Zhu, J. Wang, Y. Huang, S. He, X. You, L. Yang, On optimal power allocation for downlink non-orthogonal multiple access systems. IEEE J. Sel. Areas Commun. 35(12), 2744–2757 (2017)

    Google Scholar 

  23. F. Fang, H. Zhang, J. Cheng, S. Roy, V.C.M. Leung, Joint user scheduling and power allocation optimization for energy efficient NOMA systems with imperfect CSI. IEEE J. Sel. Areas Commun. 35(12), 2874–2885 (2017)

    Google Scholar 

  24. B. Di, S. Bayat, L. Song, Y. Li, Radio resource allocation for downlink non-orthogonal multiple access (NOMA) networks using matching theory, in Proc. of IEEE Global Communication Conference (GLOBECOM), pp. 1–6

    Google Scholar 

  25. Z. Ding, M. Peng, H.V. Poor, Cooperative non-orthogonal multiple access in 5G systems. IEEE Commun. Lett. 19(8), 1462–1465 (2015)

    Article  Google Scholar 

  26. F. Fang, H. Zhang, J. Cheng, V.C. Leung, Energy-efficient resource allocation for downlink non-orthogonal multiple access network. IEEE Trans. Commun. 64(9), 3722–3732 (2016)

    Google Scholar 

  27. L. Lei, D. Yuan, C.K. Ho, S. Sun, Joint optimization of power and channel allocation with non-orthogonal multiple access for 5G cellular systems. in Proceeding of IEEE Global Communication Conference (GLOBECOM), San Diego, CA, Dec 2015, pp. 1–6

    Google Scholar 

  28. P. Parida, S.S. Das, Power allocation in OFDM based NOMA systems: a DC programming approach, in Proceeding of IEEE Globecom Workshops, Dec 2014, pp. 1026–1031

    Google Scholar 

  29. Y. Sun, D.W.K. Ng, Z. Ding, R. Schober, Optimal joint power and subcarrier allocation for full-duplex multicarrier non-orthogonal multiple access systems. IEEE Trans. Commun. 65(3), 1077–1091 (2017)

    Article  Google Scholar 

  30. M.R. Hojeij, J.Farah, C.A. Nour, C. Douillard, Resource allocation in downlink non-orthogonal multiple access (NOMA) for future radio access, in Proceeding of IEEE Vehicular Technology Conference (VTC Spring), Dresden, Germany, May 2015, pp. 1–6

    Google Scholar 

  31. Z. Wei, J. Yuan, D.W.K. Ng, M. Elkashlan, Z. Ding, A Survey of Downlink Non-orthogonal Multiple Access for 5G Wireless Communication Networks. CoRR. arXiv: 1609.01856, https://dblp.org/rec/bib/journals/corr/WeiYNED16 (2016)

  32. M.S. Ali, H. Tabassum, E. Hossain, Dynamic user clustering and power allocation for uplink and downlink non-orthogonal multiple access (NOMA) systems. IEEE Access 4, 6325–6343 (2016)

    Google Scholar 

  33. Z. Ding, Z. Yang, P. Fan, H.V. Poor, On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Process. Lett. 21(12), 1501–1505 (2014)

    Article  Google Scholar 

  34. W. Dinkelbach, On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)

    Article  MathSciNet  Google Scholar 

  35. S. Zhang, B. Di, L. Song, Y. Li, Radio resource allocation for non-orthogonal multiple access (NOMA) relay network using matching game,” in Proceeding of IEEE International Conference Communication (ICC), Kuala Lumpur, Malaysia, May 2016, pp. 1–6

    Google Scholar 

  36. Z. Ding, P. Fan, H.V. Poor, Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions. IEEE Trans. Veh. Technol. 65(8), 6010–6023 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongming Huang .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 A. Proof of Theorem 1

Since the constraints in \(TU_{c}^{\text {EE}1}\) are all linear, it suffices to investigate the concavity of \(H\left( p_{1},q,\alpha \right) \). The second-order derivative of \(H\left( p_{1},q,\alpha \right) \) with respect to \(p_{1}\) is

$$\begin{aligned} \frac{\partial ^{2}H}{\partial p_{1}^{2}}=\frac{1}{\ln 2}\left( \frac{\varUpsilon \varTheta }{\left( p_{1}\varGamma _{1}+1\right) ^{2}\left( p_{1}\varGamma _{2}+1\right) ^{2}}\right) , \end{aligned}$$
(6.49)

where \(\varUpsilon =\sqrt{W_{2}B}\varGamma _{2}\left( p_{1}\varGamma _{1}+1\right) +\sqrt{W_{1}B}\varGamma _{1}\left( p_{1}\varGamma _{2}+1\right) \) and \(\varTheta =\sqrt{W_{2}B}\varGamma _{2}-\sqrt{W_{1}B}\varGamma _{1}+\sqrt{B}\varGamma _{1}\varGamma _{2}p_{1}\left( \sqrt{W_{2}}-\sqrt{W_{1}}\right) \). Given \(\varGamma _{1}\ge \varGamma _{2}\), if \(W_{1}\ge W_{2}\), then \(\frac{\partial ^{2}H}{\partial p_{1}^{2}}\le 0\). On the other hand, with \(q\le P\) and if C2 holds, we have

$$\begin{aligned} \sqrt{W_{2}B}\varGamma _{2}-\sqrt{W_{1}B}\varGamma _{1}+\sqrt{B}\varGamma _{1}\varGamma _{2}p_{1}\left( \sqrt{W_{2}}-\sqrt{W_{1}}\right) \sqrt{W_{2}B}\varGamma _{2}-\sqrt{W_{1}B}\varGamma _{1}+\left( \sqrt{W_{2}}-\sqrt{W_{1}}\right) \sqrt{B}\varGamma _{1}\varGamma _{2}P\le 0, \end{aligned}$$
(6.50)

also implying \(\frac{\partial ^{2}H}{\partial p_{1}^{2}}\le 0\). Following the similar manner, it can be verified that \(\frac{\partial ^{2}H}{\partial q^{2}}\le 0\), \(\frac{\partial ^{2}H}{\partial q\partial p_{1}}=0\) and \(\frac{\partial ^{2}H}{\partial p_{1}\partial q}=0\). Therefore, the Hessian matrix

$$\begin{aligned} \left( \begin{array}{cc} \frac{\partial ^{2}H}{\partial p_{1}^{2}} &{} \frac{\partial ^{2}H}{\partial q\partial p_{1}}\\ \frac{\partial ^{2}H}{\partial p_{1}\partial q} &{} \frac{\partial ^{2}H}{\partial q^{2}} \end{array}\right) \end{aligned}$$

is a negative semidefinite matrix, indicating that \(H\left( p_{1},q,\alpha \right) \) is a concave in \((p_{1},q)\).

1.2 B. Proof of Proposition 4

The Lagrange of \(TU_{c}^{\text {EE}1}\) is given by

$$\begin{aligned} L=W_{1}R_{1}(p_{1})+W_{2}R_{2}(p_{1},q)-\alpha \left( P_{T}+q\right) +\mu \left( q-2p_{1}\right) -\lambda \left( q-P\right) \end{aligned}$$
(6.51)

with Lagrange multipliers \(\mu \) and \(\lambda \ge 0\). According to Theorem 1, \(TU_{c}^{\text {EE}1}\) is a convex problem under condition C1 or C2. Therefore, its optimal solution is characterized by the following Karush–Kuhn–Tucker (KKT) conditions:

$$\begin{aligned} \frac{\partial L}{\partial p_{1}}=\frac{W_{1}B\varGamma _{1}}{\ln 2\left( 1+p_{1}\varGamma _{1}\right) }-\frac{W_{2}B\varGamma _{2}}{\ln 2\left( 1+p_{1}\varGamma _{2}\right) }-2\mu =0, \end{aligned}$$
(6.52)
$$\begin{aligned} \frac{\partial L}{\partial q}=\frac{W_{2}B\varGamma _{2}}{\ln 2\left( 1+q\varGamma _{2}\right) }-\alpha +\mu -\lambda =0, \end{aligned}$$
(6.53)
$$\begin{aligned} \mu \left( q-2p_{1}\right) =0, \end{aligned}$$
(6.54)
$$\begin{aligned} \lambda \left( q-P\right) =0. \end{aligned}$$
(6.55)

According to Definition 1, if \(p_{1}=q/2\), then the NOMA system is SIC-unstable. Therefore, from (6.54), considering the SIC stability, we have \(\mu =0\). Hence, from (6.52) we obtain the optimal \(p_{1}^{\star }=\varOmega \). It follows from (6.55) that if \(q<P\), then \(\lambda =0\). Then, from (6.53) we obtain

$$\begin{aligned} 2\varOmega \le q=\frac{W_{2}B}{\alpha \ln 2}-\frac{1}{\varGamma _{2}}<P. \end{aligned}$$
(6.56)

On the other hand, if \(q=P\), then from (6.53) we have

$$\begin{aligned} \lambda =\frac{W_{2}B\varGamma _{2}}{\ln 2\left( 1+P\varGamma _{2}\right) }-\alpha \ge 0, \end{aligned}$$
(6.57)

which leads to

$$\begin{aligned} \frac{W_{2}B}{\alpha \ln 2}-\frac{1}{\varGamma _{2}}\ge P. \end{aligned}$$
(6.58)

Therefore, the optimal q is given by \(q^{\star }=\left[ \frac{W_{2}B}{\alpha \ln 2}-\frac{1}{\varGamma _{2}}\right] _{2\varOmega }^{P}\).

1.3 C. Proof of Proposition 5

The Lagrange of \(TU_{c}^{\text {EE}2}\) is given by

$$\begin{aligned} L&=R_{1}(p_{1})+R_{2}(p_{1},q)-\alpha \left( P_{T}+q\right) +\mu \left( q-2p_{1}\right) -\lambda \left( q-P\right) \\&+\sigma _{1}\left( p_{1}-\frac{A_{1}-1}{\varGamma _{1}}\right) +\sigma _{2}\left( 1+q\varGamma _{2}-A_{2}-A_{2}p_{1}\varGamma _{2}\right) \nonumber , \end{aligned}$$
(6.59)

where \(\mu \), \(\lambda \), \(\sigma _{1}\), and \(\sigma _{2}\) are the Lagrange multipliers. The optimal solution is characterized by the following KKT conditions:

$$\begin{aligned} \frac{\partial L}{\partial p_{1}}=\frac{B\varGamma _{1}}{\ln 2\left( 1+p_{1}\varGamma _{1}\right) }-\frac{B\varGamma _{2}}{\ln 2\left( 1+p_{1}\varGamma _{2}\right) }-2\mu +\sigma _{1}-\sigma _{2}A_{2}\varGamma _{2}=0, \end{aligned}$$
(6.60)
$$\begin{aligned} \frac{\partial L}{\partial q}=\frac{B\varGamma _{2}}{\ln 2\left( 1+q\varGamma _{2}\right) }-\alpha +\mu -\lambda +\sigma _{2}\varGamma _{2}=0, \end{aligned}$$
(6.61)
$$\begin{aligned} \mu \left( q-2p_{1}\right) =0, \end{aligned}$$
(6.62)
$$\begin{aligned} \lambda \left( q-P\right) =0, \end{aligned}$$
(6.63)
$$\begin{aligned} \sigma _{1}\left( p_{1}-\frac{A_{1}-1}{\varGamma _{1}}\right) =0, \end{aligned}$$
(6.64)
$$\begin{aligned} \sigma _{2}\left( 1+q\varGamma _{2}-A_{2}-A_{2}p_{1}\varGamma _{2}\right) =0. \end{aligned}$$
(6.65)

In (6.62), considering the SIC stability, we have \(q>2p_{1}\) and hence \(\mu =0\). Note that \(\sigma _{2}\ne 0\). To see this, if \(\sigma _{2}=0\), according to (6.60), we have

$$\begin{aligned} \frac{B\varGamma _{1}}{\ln 2\left( 1+p_{1}\varGamma _{1}\right) }-\frac{B\varGamma _{2}}{\ln 2\left( 1+p_{1}\varGamma _{2}\right) }+\sigma _{1}=0 \end{aligned}$$
(6.66)

which, however, does not hold since \(\frac{B\varGamma _{1}}{\ln 2\left( 1+p_{1}\varGamma _{1}\right) }-\frac{B\varGamma _{2}}{\ln 2\left( 1+p_{1}\varGamma _{2}\right) }+\sigma _{1}>0\) with \(\varGamma _{1}\ge \varGamma _{2}\).

We consider two cases: (1) \(\sigma _{1}\ne 0,\sigma _{2}\ne 0\); and (2) \(\sigma _{1}=0,\sigma _{2}\ne 0\). First, if \(\sigma _{1}\ne 0,\sigma _{2}\ne 0\), the optimal solution can be easily obtained as

$$\begin{aligned} p_{1}^{\star }=\frac{1+q^{\star }\varGamma _{2}-A_{2}}{A_{2}\varGamma _{2}},~q^{\star }=\varUpsilon \end{aligned}$$
(6.67)

from (6.64) and (6.65). Then, if \(\sigma _{1}=0,\sigma _{2}\ne 0\), according to (6.60) and (6.61), we have

$$\begin{aligned} \frac{A_{2}\varGamma _{2}}{\left( 1+q\varGamma _{2}\right) }+\left( \frac{1}{1/\varGamma _{1}+p_{1}}-\frac{1}{1/\varGamma _{2}+p_{1}}\right) =\left( \alpha +\lambda \right) A_{2}. \end{aligned}$$
(6.68)

From (6.65), we obtain \(p_{1}=\frac{1+q\varGamma _{2}-A_{2}}{A_{2}\varGamma _{2}}\), which along with (6.68) leads to

$$\begin{aligned} q^{\star }=\frac{1}{\alpha +\lambda }-\frac{A_{2}}{\varGamma _{1}}+\frac{A_{2}-1}{\varGamma _{2}}. \end{aligned}$$
(6.69)

It follows from (6.63) that if \(q<P\), then \(\lambda =0\). From (6.69), we obtain

$$\begin{aligned} \Upsilon \le q=\frac{1}{\alpha }-\frac{A_{2}}{\varGamma _{1}}+\frac{A_{2}-1}{\varGamma _{2}}<P. \end{aligned}$$
(6.70)

On the other hand, if \(q=P\), then from (6.53) we have

$$\begin{aligned} \lambda =\frac{\varGamma _{1}\varGamma _{2}}{A_{2}\varGamma _{2}-\left( A_{2}-1\right) \varGamma _{1}+P\varGamma _{2}\varGamma _{1}}-\alpha \ge 0, \end{aligned}$$
(6.71)

which leads to

$$\begin{aligned} \frac{1}{\alpha }-\frac{A_{2}}{\varGamma _{1}}+\frac{A_{2}-1}{\varGamma _{2}}\ge P. \end{aligned}$$
(6.72)

Therefore, optimal q is given by \(q^{\star }=\left[ \frac{W_{2}B}{\alpha \ln 2}-\frac{1}{\varGamma _{2}}\right] _{\Upsilon }^{P}\).

1.4 D. Proof of Theorem 2

Let \(q_{i}=\sum _{j=1}^{i}p_{j}\), then \(q_{N}=P\) and \(p_{i}=\frac{2^{t}-1}{\varGamma _{i}}\left( \sum _{j=1}^{i-1}p_{j}\varGamma _{i}+1\right) \) can be transformed into \(q_{i}=q_{i-1}2^{t}+\frac{2^{t}-1}{\varGamma _{i}}\). Thus, we obtain \(P=q_{N}=\sum _{i=1}^{N}\frac{\left( 2^{t}-1\right) 2^{(N-i)t}}{\varGamma _{i}}\ge \chi \), implying \(t\ge 1\) and \(p_{i}\ge p_{i-1}\) for \(i=2,\ldots ,N\). Therefore, this solution satisfies the power order constraint.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Y., Wang, J., Zhu, J. (2019). Optimal Power Allocation for Downlink NOMA Systems. In: Vaezi, M., Ding, Z., Poor, H. (eds) Multiple Access Techniques for 5G Wireless Networks and Beyond. Springer, Cham. https://doi.org/10.1007/978-3-319-92090-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92090-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92089-4

  • Online ISBN: 978-3-319-92090-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics