Advertisement

Study on Data Anonymization for Deep Learning

  • Ayahiko Niimi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10868)

Abstract

In this paper, we propose privacy protection data mining through deep learning. We discuss existing privacy protection data mining, study its features, and examine an anonymizing tool for deep learning. Experiments using anonymization tools (UAT) confirmed that deep learning does not reduce accuracy by making it anonymous.

Keywords

Deep learning Privacy preserving data mining Anonymization Accuracy Computational cost 

References

  1. 1.
    Alphago – deepmind. Accessed 24 Feb 2018Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Privacy-preserving data mining. SIGMOD Rec. 29(2), 439–450 (2000)CrossRefGoogle Scholar
  3. 3.
    Aggarwal, C.C., Yu, P.S.: A general survey of privacy-preserving data mining models and algorithms. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining. Advances in Database Systems, vol. 34, pp. 11–52. Springer, Boston (2008).  https://doi.org/10.1007/978-0-387-70992-5_2CrossRefGoogle Scholar
  4. 4.
    Sakuma, J., Kobayashi, S.: Privacy-Preserving Data Mining. Jpn. Soc. Artif. Intell. 24(2), 283–294 (2009)Google Scholar
  5. 5.
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_18CrossRefGoogle Scholar
  6. 6.
    Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: L-diversity: privacy beyond k-anonymity. In: 22nd International Conference on Data Engineering (ICDE 2006), pp. 24–24, April 2006Google Scholar
  7. 7.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)CrossRefGoogle Scholar
  9. 9.
    Le, Q.: Building high-level features using large scale unsupervised learning. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8595–8598, May 2013Google Scholar
  10. 10.
    Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout Networks. ArXiv e-prints, February 2013Google Scholar
  11. 11.
    Niimi, A.: Deep learning for credit card data analysis. In: World Congress on Internet Security (WorldCIS-2015), Dublin, Ireland, pp. 73–77, October 2015Google Scholar
  12. 12.
    Niimi, A.: Deep learning with large scale dataset for credit card data analysis. In: Fuzzy Systems and Data Mining II, Proceedings of FSDM 2016, Macau, pp. 149–158, December 2016Google Scholar
  13. 13.
    Apache Spark, lightning-fast cluster computing. Accessed 15 Sept 2015Google Scholar
  14. 14.
    0xdata - H2O.ai - fast scalable machine learning. Accessed 15 Sept 2015Google Scholar
  15. 15.
    Candel, A., Parmar, V.: Deep Learning with H2O. H2O (2015). Accessed 15 Sept 2015Google Scholar
  16. 16.
    SparkR (R on Spark) - Spark 1.5.0 documentation. Accessed 15 Sept 2015Google Scholar
  17. 17.
    Cornell anonymization toolkit. Accessed 31 Jan 2017Google Scholar
  18. 18.
    UTD anonymization toolbox. Accessed 31 Jan 2017Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Future University HakodateHakodateJapan

Personalised recommendations