Advertisement

Improved Exploration and Exploitation in Particle Swarm Optimization

  • Dania Tamayo-Vera
  • Stephen Chen
  • Antonio Bolufé-Röhler
  • James Montgomery
  • Tim Hendtlass
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10868)

Abstract

Exploration and exploitation are analyzed in Particle Swarm Optimization (PSO) through a set of experiments that make new measurements of these key features. Compared to analyses on diversity and particle trajectories, which focus on particle motions and their potential to achieve exploration and exploitation, our analysis also focuses on the pbest positions that reflect the actual levels of exploration and exploitation that have been achieved by PSO. A key contribution of this paper is a clear criterion for when restarting particles can be expected to be a useful strategy in PSO.

Keywords

Exploration Exploitation Particle Swarm Optimization Multi-modal search spaces 

References

  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: 1995 Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)Google Scholar
  2. 2.
    Bonyadi, M.R., Michalewicz, Z.: Particle swarm optimization for single objective continuous space problems: a review (2017)Google Scholar
  3. 3.
    Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In: 2007 Swarm Intelligence Symposium, pp. 120–127. IEEE (2007)Google Scholar
  4. 4.
    Črepinšek, M., Liu, S.H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)CrossRefGoogle Scholar
  5. 5.
    Gonzalez-Fernandez, Y., Chen, S.: Leaders and followers – a new metaheuristic to avoid the bias of accumulated information. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 776–783. IEEE (2015)Google Scholar
  6. 6.
    Bosman, P., Engelbrecht, A.P.: Diversity rate of change measurement for particle swarm optimisers. In: Dorigo, M., Birattari, M., Garnier, S., Hamann, H., Montes de Oca, M., Solnon, C., Stützle, T. (eds.) ANTS 2014. LNCS, vol. 8667, pp. 86–97. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09952-1_8CrossRefGoogle Scholar
  7. 7.
    Bonyadi, M.R., Michalewicz, Z.: Impacts of coefficients on movement patterns in the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 21(3), 378–390 (2017)Google Scholar
  8. 8.
    Engelbrecht, A.: Particle swarm optimization: velocity initialization. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)Google Scholar
  9. 9.
    Helwig, S., Branke, J., Mostaghim, S.: Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans. Evol. Comput. 17(2), 259–271 (2013)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Liang, J., Qu, B., Suganthan, P., Hernández-Díaz, A.G.: Problem definitions and evaluation criteria for the CEC, special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical report 201212, pp. 3–18 (2013)Google Scholar
  12. 12.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  13. 13.
    Venter, G., Sobieszczanski-Sobieski, J.: Particle swarm optimization. AIAA J. 41(8), 1583–1589 (2003)CrossRefGoogle Scholar
  14. 14.
    Kaucic, M.: A multi-start opposition-based particle swarm optimization algorithm with adaptive velocity for bound constrained global optimization. J. Glob. Optim. 1–24 (2013)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Dania Tamayo-Vera
    • 1
  • Stephen Chen
    • 2
  • Antonio Bolufé-Röhler
    • 1
  • James Montgomery
    • 3
  • Tim Hendtlass
    • 4
  1. 1.School of Mathematics and Computer ScienceUniversity of HavanaHavanaCuba
  2. 2.School of Information TechnologyYork UniversityTorontoCanada
  3. 3.School of Technology, Environments and DesignUniversity of TasmaniaHobartAustralia
  4. 4.Department of Computer Science and Software EngineeringSwinburne University of TechnologyMelbourneAustralia

Personalised recommendations