Advertisement

Robot Magic: A Robust Interactive Humanoid Entertainment Robot

  • Kyle J. Morris
  • Vladyslav Samonin
  • John Anderson
  • Meng Cheng Lau
  • Jacky Baltes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10868)

Abstract

In recent years, there have been a number of popular robotics competitions whose intent is to advance the state of research by comparing embodied entries against one another in real time. The IEEE Humanoid application challenge is intended to broaden these by allowing more open-ended entries, with a general theme within which entrants are challenged to create the most effective application involving a humanoid robot. This year’s theme was Robot Magic, and this paper describes our first-place winning entry in the 2017 competition, running on a ROBOTIS OP2 humanoid robot. We describe the overall agent design and contributions to perception, learning, control, and representation, which together support a robust live robot magic performance.

References

  1. 1.
    Baltes, J., Anderson, J.: Advancing artificial intelligence through minimalist humanoid robotics. In: Liu, D., Wang, L., Tan, K.C. (eds.) Design and Control of Intelligent Robotic Systems, pp. 355–376. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-89933-4_17CrossRefGoogle Scholar
  2. 2.
    Baltes, J., Tu, K.Y., Sadeghnejad, S., Anderson, J.: Hurocup: competition for multi-event humanoid robot athletes. Knowl. Eng. Rev., 1–14 (2016)Google Scholar
  3. 3.
    Randi, J.: Conjuring. St. Martin’s Press, New York (1993)Google Scholar
  4. 4.
    Tufte, E., Swiss, J.I.: Explaining magic: pictorial instructions and disinformation design. In: Tufte, E. (ed.) Visual Explanations. Graphics Press, Cheshire (1997)Google Scholar
  5. 5.
    Liang, F., Gotham, M., Johnson, M., Shotton, J.: Automatic stylistic composition of bach chorales with deep LSTM. In: Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR-17), Suzhou, China, October 2017Google Scholar
  6. 6.
    Google: Experiments with Google. https://experiments.withgoogle.com/ai
  7. 7.
    Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., Sutphen, S.: Checkers is solved. Science 317, 1518–1521 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Bagot, J., Anderson, J., Baltes, J.: Vision-based multi-agent slam for humanoid robots. In: Proceedings of CIRAS-2008), pp. 171–176, June 2008Google Scholar
  9. 9.
    Baltes, J., Cheng, C.T., Bagot, J., Anderson, J.: Vision-based obstacle run for teams of humanoid robots (demonstrated system). In: Proceedings of AAMAS-2011, Taipei, Taiwan, pp. 1319–1320, May 2011Google Scholar
  10. 10.
    Softbank Robotics: Pepper. http://www.softbankrobotics.com
  11. 11.
    Kuroki, Y.: A small biped entertainment robot. In: Proceedings of 2001 International Symposium on Micromechatronics and Human Science, MHS 2001, pp. 3–4 (2001)Google Scholar
  12. 12.
    Koretake, R., Kaneko, M., Higashimori, M.: The robot that can achieve card magic. ROBOMECH J. 2(1) (2015)Google Scholar
  13. 13.
    Nuñez, D., Tempest, M., Viola, E., Breazeal, C.: An initial discussion of timing considerations raised during development of a magician-robot interaction. In: Proceedings ACM/IEEE Workshop on Timing in Human-Robot Interaction HRI (2014)Google Scholar
  14. 14.
    Tamura, Y., Yano, S., Osumi, H.: Modeling of human attention based on analysis of magic. In: Proceedings of HRI 2014, New York, NY, USA, pp. 302–303. ACM (2014)Google Scholar
  15. 15.
    Morris, K., Anderson, J., Lau, M.C., Baltes, J.: Interaction and learning in a humanoid robot magic performance. In: Proceedings of the AAAI Spring Symposium on Integrated Representation, Reasoning, and Learning in Robotics, March 2018Google Scholar
  16. 16.
    Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: a review of classification techniques (2007)Google Scholar
  17. 17.
    Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge (1998)Google Scholar
  18. 18.
    Anderson, J., Baltes, J.: An agent-based approach to introductory robotics using robotic soccer. Int. J. Rob. Autom. 21(2), 141–152 (2006)Google Scholar
  19. 19.
    Liu, T., Baltes, J., Anderson, J.: Archangel, a flexible and intuitive architecture for intelligent mobile robots. In: Proceedings of CIRAS-2005, Singapore, December 2005Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kyle J. Morris
    • 1
  • Vladyslav Samonin
    • 1
  • John Anderson
    • 1
  • Meng Cheng Lau
    • 1
  • Jacky Baltes
    • 2
  1. 1.Autonomous Agents Laboratory, Department of Computer ScienceUniversity of ManitobaWinnipegCanada
  2. 2.Department of Electrical EngineeringNational Taiwan Normal UniversityTaipeiTaiwan

Personalised recommendations