Hardware/Software Co-design for Template Matching Using Cuckoo Search Optimization

  • Alexandre de Vasconcelos Cardoso
  • Nadia Nedjah
  • Luiza de Macedo Mourelle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10868)

Abstract

Template matching is an important method used for object tracking in order to find a given pattern within a frame sequence. Pearson’s Correlation Coefficient is applied to each image pixel to quantify the degree of similarity between two images. To reduce the processing time, a dedicated co-processor, responsible of performing the correlation computation, is used. Cuckoo Search is applied to improve the search for the maximum correlation point between the image and the template. The search process is implemented in software and is run by an embedded general purpose processor. Results are compared to those previously obtained when using Particle Swarm Optimization for the search process, while keeping the same hardware.

Notes

Acknowledgement

We thank the State of Rio de Janeiro Research Funding Agency (FAPERJ, http://www.faperj.br) and the Brazilian Navy (https://www.marinha.mil.br/) for funding this study.

References

  1. 1.
    Ahuja, K., Tuli, P.: Object recognition by template matching using correlations and phase angle method. Int. J. Adv. Res. Comput. Commun. Eng. 2(3), 1368–1373 (2013)Google Scholar
  2. 2.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: a survey. ACM Comput. Surv. (CSUR) 38(4), 13 (2006)CrossRefGoogle Scholar
  3. 3.
    Perveen, N., Kumar, D., Bhardwaj, I.: An overview on template matching methodologies and its applications. IJRCCT 2(10), 988–995 (2013)Google Scholar
  4. 4.
    Sharma, P., Kaur, M.: Classification in pattern recognition: a review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(4), 3 (2013)Google Scholar
  5. 5.
    Tavares, Y.M.: Sistema integrado de hardware software para rastreamento de alvos. Master’s thesis, UERJ, Rio de Janeiro, Brazil (2016)Google Scholar
  6. 6.
    Tavares, Y.M., Nedjah, N., de Macedo Mourelle, L.: Co-design system for template matching using dedicated co-processor and particle swarm optimization. In: Latin American Symposium on Circuits and Systems (2017)Google Scholar
  7. 7.
    Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: World Congress on Nature and Biologically Inspired Computing, NaBIC 2009, Coimbatore, India, pp. 210–214. IEEE (2009)Google Scholar
  8. 8.
    Fister Jr., I., Fister, D., Fister, I.: A comprehensive review of cuckoo search: variants and hybrids. Int. J. Math. Model. Numer. Optim. 4(4), 387–409 (2013)MATHGoogle Scholar
  9. 9.
    Walia, G.S., Kapoor, R.: Intelligent video target tracking using an evolutionary particle filter based upon improved cuckoo search. Expert Syst. Appl. 41(14), 6315–6326 (2014)CrossRefGoogle Scholar
  10. 10.
    Merad, D., Aziz, K.E., Iguernaissi, R., Fertil, B., Drap, P.: Tracking multiple persons under partial and global occlusions: application to customers behavior analysis. Pattern Recogn. Lett. 81, 11–20 (2016)CrossRefGoogle Scholar
  11. 11.
    Schelle, A., Stütz, P.: Visual communication with UAS: recognizing gestures from an airborne platform. In: Lackey, S., Chen, J. (eds.) VAMR 2017. LNCS, vol. 10280, pp. 173–184. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57987-0_14CrossRefGoogle Scholar
  12. 12.
    Jarrah, A., Jamali, M.M., Hosseini, S.S.S.: Optimized FPGA based implementation of particle filter for tracking applications. In: NAECON IEEE National Aerospace and Electronics Conference, Dayton, USA, pp. 233–236. IEEE (2014)Google Scholar
  13. 13.
    Liu, W., Chen, H., Ma, L.: Moving object detection and tracking based on ZYNQ FPGA and ARM SOC. In: IET International Radar Conference 2015, Hangzhou, China, pp. 1–4. IET (2015)Google Scholar
  14. 14.
    SensorToImage: SVDK Hardware User Guide, revision 1.1. SensorToImage (2015)Google Scholar
  15. 15.
    Collins, R., Zhou, X., Teh, S.K.: An open source tracking testbed and evaluation web site. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, vol. 2, no. 6, p. 35 (2005)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexandre de Vasconcelos Cardoso
    • 1
    • 2
  • Nadia Nedjah
    • 2
  • Luiza de Macedo Mourelle
    • 3
  1. 1.Brazilian Navy Weapons Systems DirectorateBrazilian NavyRio de JaneiroBrazil
  2. 2.Department of Electronics Engineering and Telecommunication, Engineering FacultyState University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Department of Systems Engineering and Computation, Engineering FacultyState University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations