Advertisement

A Taxonomy for Website Evaluation Tools Grounded on Semiotic Framework

  • Vagner Figueredo de Santana
  • Maria Cecília Calani Baranauskas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10907)

Abstract

Taxonomies are valuable for providing a standardized way of cataloging elements into categories. In the context of website evaluation tools, providing a structured way for researchers and practitioners to compare and analyze existing solutions is valuable for identifying gaps/trends or to support well-informed decisions during development cycles (from planning to deployment). This paper proposes a taxonomy for classifying website evaluation tools grounded on Semiotic Framework, an artifact from Organizational Semiotics. The taxonomy is structured into 4 main dimensions (i.e., Participant-evaluator interaction; Effort; Automation type; Data source) and considers interaction and efforts involving UI evaluation stakeholders. From the proposed taxonomy, we expect to support consistent characterization of website evaluation tools.

Keywords

User interface evaluation Usability Accessibility Organizational Semiotics 

References

  1. 1.
    Abascal, J., Nicolle, C.: Moving towards inclusive design guidelines for socially and ethically aware HCI. Interact. Comput. 17(5), 484–505 (2005)CrossRefGoogle Scholar
  2. 2.
    Arroyo, E., Selker, T., Wei, W.: Usability tool for analysis of web designs using mouse tracks. In: Proceedings of ACM CHI 2006 Conference on Human Factors in Computing Systems. Work-in-Progress, vol. 2, pp. 484–489 (2006)Google Scholar
  3. 3.
    Balbo, S., Goschnick, S., Tong, D., Paris, C.: Leading web usability evaluations to WAUTER. In: AusWeb05 - Australian World Wide Web Conference 2005 (2005)Google Scholar
  4. 4.
    Bigham, J.P., Cavender, A.C., Brudvik, J.T., Wobbrock, J.O., Ladner, R.E.: WebinSitu: a comparative analysis of blind and sighted browsing behavior. In: Pontelli, E., Trewin, S. (eds.) ASSETS, pp. 51–58. ACM (2007)Google Scholar
  5. 5.
    Brajnik, G.: Using automatic tools in accessibility and usability assurance processes. In: Stary, C., Stephanidis, C. (eds.) UI4ALL 2004. LNCS, vol. 3196, pp. 219–234. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-30111-0_18CrossRefGoogle Scholar
  6. 6.
    Cadez, I.V., Heckerman, D., Smyth, P., Meek, C., White, S.: Model-based clustering and visualization of navigation patterns on a web site. Data Mining Knowl. Discov. 7(4), 399–424 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Carta, T., Paternò, F., de Santana, V.F.: Web usability probe: a tool for supporting remote usability evaluation of web sites. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6949, pp. 349–357. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23768-3_29CrossRefGoogle Scholar
  8. 8.
    Chi, E.H., Rosien, A., Heer, J.: LumberJack: intelligent discovery and analysis of web user traffic composition. In: Zaïane, O.R., Srivastava, J., Spiliopoulou, M., Masand, B. (eds.) WebKDD 2002. LNCS (LNAI), vol. 2703, pp. 1–16. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39663-5_1CrossRefGoogle Scholar
  9. 9.
    Cooley, R., Tan, P.-N., Srivastava, J.: Discovery of interesting usage patterns from web data. In: Masand, B., Spiliopoulou, M. (eds.) WebKDD 1999. LNCS (LNAI), vol. 1836, pp. 163–182. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-44934-5_10CrossRefGoogle Scholar
  10. 10.
    de Santana, V.F., Baranauskas, M.C.C., Henriques, M.A.A.: A framework for web 2.0 secure widgets. In: IADIS, pp. 69– 76 (2011)Google Scholar
  11. 11.
    Domenech, J.M., Lorenzo, J.: A tool for web usage mining. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 695–704. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77226-2_70CrossRefGoogle Scholar
  12. 12.
    Etgen, M., Cantor, J.: What does getting WET (web event-logging tool) mean for web usability? In: Proceedings of 5th Conference on Human Factors & the Web (1999)Google Scholar
  13. 13.
    Fenstermacher, K.D., Ginsburg, M.: Mining client-side activity for personalization. In: WECWIS, pp. 205–212 (2002)Google Scholar
  14. 14.
    Google. Google analytics (2018). http://www.google.com/analytics
  15. 15.
    Hand, D., Mannila, H., Smyth, P.: Principles of Data Mining. MIT Press, Cambridge (2001)Google Scholar
  16. 16.
    Hartson, H.R., Castillo, J.C., Kelso, J., Neale, W.C.: Remote evaluation: the network as an extension of the usability laboratory. In: Proceedings of ACM CHI 96 Conference on Human Factors in Computing Systems. PAPERS: Evaluation, vol. 1, pp. 228–235 (1996)Google Scholar
  17. 17.
    Hong, J.I., Heer, J., Waterson, S., Landay, J.A.: WebQuilt: a proxy-based approach to remote web usability testing. ACM Trans. Inf. Syst. 19(3), 263–285 (2001)CrossRefGoogle Scholar
  18. 18.
    International Organization for Standardization ISO. Ergonomic requirements for office work with display terminals (VDTs). part 11: Guidance on usability (1998)Google Scholar
  19. 19.
    Ivory, M.Y., Hearst, M.A.: The state of the art in automating usability evaluation of user interfaces. ACM Comput. Surv. 33(4), 470–516 (2001)CrossRefGoogle Scholar
  20. 20.
    Liu, K.: Semiotics in Information Systems Engineering. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  21. 21.
    National Institute of Standards and Technology NIST. WebVIP (2002). http://zing.ncsl.nist.gov/WebTools/WebVIP/overview.html
  22. 22.
    Paganelli, L., Paternò, F.: Intelligent analysis of user interactions with web applications. In: Proceedings of the 7th International Conference on Intelligent User Interfaces, IUI 2002, pp. 111–118, New York, NY, USA (2002)Google Scholar
  23. 23.
    Paternò, F., Piruzza, A., Santoro, C.: Remote web usability evaluation exploiting multimodal information on user behavior. In: Calvary, G., Pribeanu, C., Santucci, G., Vanderdonckt, J. (eds.) Computer-Aided Design of User Interfaces V, pp. 287–298. Springer, Dordrecht (2007).  https://doi.org/10.1007/978-1-4020-5820-2_24CrossRefGoogle Scholar
  24. 24.
    Paternò, F., Santoro, C.: Remote usability evaluation: discussion of a general framework and experiences from research with a specific tool. In: Law, E.L.-C., Hvannberg, E.T., Cockton, G. (eds.) Maturing Usability. HIS, pp. 197–221. Springer, London (2008).  https://doi.org/10.1007/978-1-84628-941-5_9CrossRefGoogle Scholar
  25. 25.
    Pierrakos, D., Paliouras, G., Papatheodorou, C., Spyropoulos, C.D.: Web usage mining as a tool for personalization: a survey. User Model. User-Adapt. Interact. 13(4), 311–372 (2003)CrossRefGoogle Scholar
  26. 26.
    Rubin, J.: Handbook of Usability Testing: How to Plan, Design, and Conduct Effective Tests, 1st edn. Wiley, Hoboken (1994)Google Scholar
  27. 27.
    de Santana, V.F.: Identificação de padrões de utilização da web mediada por tecnologias assistivas. Master’s thesis, Instituto de Computação - Universidade Estadual de Campinas (UNICAMP), Supervisor: Profa. Maria Cecilia Calani Baranauskas (2009)Google Scholar
  28. 28.
    de Santana, V.F., Baranauskas, M.C.C.: A prospect of websites evaluation tools based on event logs. In: Forbrig, P., Paternò, F., Pejtersen, A.M. (eds.) HCIS 2008. IIFIP, vol. 272, pp. 99–104. Springer, Boston, MA (2008).  https://doi.org/10.1007/978-0-387-09678-0_9CrossRefGoogle Scholar
  29. 29.
    de Santana, V.F., Baranauskas, M.C.C.: Bringing users of a digital divide context to website evaluation using welfit. In: Fatores Humanos em Sistemas Computacionais (IHC 2010). SBC (2010)Google Scholar
  30. 30.
    de Santana, V.F., Baranauskas, M.C.C.: WELFIT: a remote evaluation tool for identifying Web usage patterns through client-side logging. Int. J. Hum.-Comput. Stud. 76, 40–49 (2015)CrossRefGoogle Scholar
  31. 31.
    Shahabi, C., Banaei-Kashani, F.: A framework for efficient and anonymous web usage mining based on client-side tracking. In: Kohavi, R., Masand, B.M., Spiliopoulou, M., Srivastava, J. (eds.) WebKDD 2001. LNCS (LNAI), vol. 2356, pp. 113–144. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45640-6_6CrossRefzbMATHGoogle Scholar
  32. 32.
    Spiliopoulou, M., Faulstich, L.C.: WUM: a tool for web utilization analysis. In: Atzeni, P., Mendelzon, A., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 184–203. Springer, Heidelberg (1999).  https://doi.org/10.1007/10704656_12CrossRefGoogle Scholar
  33. 33.
    Stamper, R.K.: A semiotic theory of information and information systems/applied semiotics. In: Invited papers for the ICL/University of Newcastle Seminar on ‘Information’, 6–10 September 1993Google Scholar
  34. 34.
    Stamper, R.K.: Signs of Work: Semiosis and Information Processing in Organisations. Walter de Gruyter, Berlin (1996)Google Scholar
  35. 35.
    Stamper, R.K.: Extending semiotics for the study of organisations. In: Proceedings of Conference on Semiotics and the Information Sciences (1998)Google Scholar
  36. 36.
    Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Person Education, London (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vagner Figueredo de Santana
    • 1
  • Maria Cecília Calani Baranauskas
    • 1
  1. 1.University of CampinasCampinasBrazil

Personalised recommendations