Haptic Interface Technologies Using Perceptual Illusions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10904)


With virtual reality now accessible to anyone through high-end consumer headsets and input devices, researchers are seeking cost-effective designs based on human perceptual properties for virtual reality interfaces. The author has been studying a sensory-illusion-based approach to designing human-computer interface technologies. This paper overviews how we are using this approach to develop force displays that elicit illusory continuous force sensations by presenting asymmetric vibrations and kinesthetic displays based on a cross-modal effect among visual, auditory, and tactile cues of self-motion.


Haptics Somatosensation Sensory illusion 


  1. 1.
    Amemiya, T., Ando, H., Maeda, T.: Virtual force display: direction guidance using asymmetric acceleration via periodic translational motion. In: Proceedings of World Haptics Conference 2005, pp. 619–622 (2005)Google Scholar
  2. 2.
    Amemiya, T: Haptic interface using sensory illusion. In: Tutorial in IEEE Virtual Reality 2008, Integration of Haptics in Virtual Environments: from Perception to Rendering, Reno, NV (2008)Google Scholar
  3. 3.
    Amemiya, T., Sugiyama, H.: Orienting kinesthetically: a haptic handheld wayfinder for people with visual impairments. ACM Trans. Access. Comput. 3(2), 1–23 (2010). Article 6CrossRefGoogle Scholar
  4. 4.
    Amemiya, T., Maeda, T.: Asymmetric oscillation distorts the perceived heaviness of handheld objects. IEEE Trans. Haptics 1(1), 9–18 (2008)CrossRefGoogle Scholar
  5. 5.
    Amemiya, T., Maeda, T.: NOBUNAGA: multicylinder-like pulse generator for kinesthetic illusion of being pulled smoothly. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 580–585. Springer, Heidelberg (2008). Scholar
  6. 6.
    Amemiya, T., Ando, H., Maeda, T.: Hand-held force display with spring-cam mechanism for generating asymmetric acceleration. In: Proceedings of World Haptics Conference 2007, Tsukuba, Japan, pp. 572–573 (2007)Google Scholar
  7. 7.
    Amemiya, T., Gomi, H.: Distinct pseudo-attraction force sensation by a thumb-sized vibrator that oscillates asymmetrically. In: Auvray, M. (ed.) EUROHAPTICS 2014. LNCS, vol. 8619, pp. 88–95. Springer, Heidelberg (2014). Scholar
  8. 8.
    Amemiya, T., Hirota, K., Ikei, Y.: Tactile apparent motion on the torso modulates perceived forward self-motion velocity. IEEE Trans. Haptics 9(4), 474–482 (2016)CrossRefGoogle Scholar
  9. 9.
    Amemiya, T.: Perceptual illusions for multisensory displays. Invited talk. In: Proceedings of the 22nd International Display Workshops (IDW 2015), Otsu, Japan, vol. 22, pp. 1276–1279 (2015)Google Scholar
  10. 10.
    Amemiya, T., Gomi, H.: Active Manual Movement Improves Directional Perception of Illusory Force. IEEE Trans. Haptics 9(4), 465–473 (2016)CrossRefGoogle Scholar
  11. 11.
    Amemiya, T., Ikei, Y., Hirota, K., Kitazaki, M.: Vibration on the Soles of the Feet Evoking a Sensation of Walking Expands Peripersonal Space. In: Proceedings of IEEE World Haptics 2017, Munich, Germany, pp. 234–239 (2017)Google Scholar
  12. 12.
    Amemiya, T., Hirota, K., Ikei, Y.: Topographic surface perception modulated by pitch rotation of motion chair. In: Proceedings of 18th International Conference on Human-Computer Interaction (HCI International 2016), Toronto, Canada, pp. 483–490 (2016)CrossRefGoogle Scholar
  13. 13.
    Bolanowski Jr., S.J., Gescheider, G.A., Verrillo, R.T., Checkosky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84(5), 680–694 (1988)CrossRefGoogle Scholar
  14. 14.
    Canzoneri, E., Magosso, E., Serino, A.: Dynamic sounds capture the boundaries of peripersonal space representation in humans. PLoS ONE 7(9), e44306 (2012)CrossRefGoogle Scholar
  15. 15.
    Chapman, C.E., Bushnell, M., Miron, D., Duncan, G., Lund, J.: Sensory perception during movement in man. Exp. Brain Res. 68(3), 516–524 (1987)CrossRefGoogle Scholar
  16. 16.
    Hayward, V.: A brief taxonomy of tactile illusions and demonstrations that can be done in a hardware store. Brain Res. Bull. 75(6), 742–752 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hirose, M.: The second generation virtual reality technology. Keynote/invited Speech. In: Proceedings of 16th International Conference on Virtual Systems and Multimedia (VSMM 2010), Seoul, Korea (2010)Google Scholar
  18. 18.
    Lederman, S.J., Klatzky, R.L.: Hand movements: a window into haptic object recognition. Cogn. Psychol. 19(3), 342–368 (1987)CrossRefGoogle Scholar
  19. 19.
    Maeno, T., Kobayashi, K., Yamazaki, N.: Relationship between the structure of human finger tissue and the location of tactile receptors. Bull. JSME Int. J. 41, 94–100 (1998)CrossRefGoogle Scholar
  20. 20.
    Noel, J.-P., Grivaz, P., Marmaroli, P., Lissek, H., Blanke, O., Serino, A.: Full body action remapping of peripersonal space: the case of walking. Neuropsychologia 70, 375–384 (2015)CrossRefGoogle Scholar
  21. 21.
    Robles-De-La-Torre, G., Hayward, V.: Force can overcome object geometry in the perception of shape through active touch. Nature 412(6845), 445–448 (2001)CrossRefGoogle Scholar
  22. 22.
    Srinivasan, M.A., Whitehouse, J.M., Lamotte, R.H.: Tactile detection of slip: surface microgeometry and peripheral neural codes. J. Neurophysiol. 63(6), 323–332 (1990)CrossRefGoogle Scholar
  23. 23.
    Tanaka, Y., Masataka, S., Yuka, K., Fukui, Y., Yamashita, J., Nakamura, N.: Mobile torque display and haptic characteristics of human palm. In: Proceedings of ICAT 2001, pp. 115–120 (2001)Google Scholar
  24. 24.
    Yano, H., Yoshie, M., Iwata, H.: Development of a non-grounded haptic interface using the gyro effect. In: Proceedings of HAPTICS 2003, pp. 32–39 (2003)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.NTT Communication Science LaboratoriesAtsugi-shiJapan

Personalised recommendations