Smart city concept model - guide to establishing a model for data interoperability (2014). https://www.bsigroup.com/en-IN/smart-cities/Smart-Cities-Standards-and-Publication/PAS-182-smart-cities-data-concept-model/. Accessed 2 Feb 2018
Ageing, W.H.O., Unit, L.C.: WHO global report on falls prevention in older age. World Health Organization (2008)
Google Scholar
Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A.: Social fMRI: investigating and shaping social mechanisms in the real world. Pervasive Mob. Comput. 7(6), 643–659 (2011). https://doi.org/10.1016/j.pmcj.2011.09.004
CrossRef
Google Scholar
Balakrishnan, G., Durand, F., Guttag, J.: Detecting pulse from head motions in video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3430–3437 (2013)
Google Scholar
Biderman, A., Cwikel, J., Fried, A., Galinsky, D.: Depression and falls among community dwelling elderly people: a search for common risk factors. J. Epidemiol. Commun. Health 56(8), 631–636 (2002)
CrossRef
Google Scholar
Chakravarty, K., Sinha, A., Sinha, S., Chatterjee, D., Das, A.: Single leg stance (SLS) and vibration index (VI): new instrumental indices for fall risk estimation in stroke survivors. Gait Posture 49, 168 (2016)
Google Scholar
Chakravarty, K., Suman, S., Bhowmick, B., Sinha, A., Das, A.: Quantification of balance in single limb stance using kinect. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 854–858. IEEE (2016)
Google Scholar
Chandel, V., Choudhury, A.D., Ghose, A., Bhaumik, C.: AcTrak - unobtrusive activity detection and step counting using smartphones. In: Stojmenovic, I., Cheng, Z., Guo, S. (eds.) MindCare 2014. LNICST, vol. 131, pp. 447–459. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11569-6_35
CrossRef
Google Scholar
Crutcher, M.D., Calhoun-Haney, R., Manzanares, C.M., Lah, J.J., Levey, A.I., Zola, S.M.: Eye tracking during a visual paired comparison task as a predictor of early dementia. Am. J. Alzheimer’s Dis. Other Dement. 24(3), 258–266 (2009)
CrossRef
Google Scholar
Eriksson, S., Gustafson, Y., Lundin-Olsson, L.: Risk factors for falls in people with and without a diagnose of dementia living in residential care facilities: a prospective study. Arch. Gerontol. Geriatr. 46(3), 293–306 (2008)
CrossRef
Google Scholar
Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity in smartphone usage. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services. In: MobiSys 2010. ACM (2010). http://doi.acm.org/10.1145/1814433.1814453
Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B., Landay, J.A.: MyExperience: a system for in situ tracing and capturing of user feedback on mobile phones. In: Proceedings of the 5th International Conference on Mobile Systems, Applications and Services, MobiSys 2007. ACM (2007). http://doi.acm.org/10.1145/1247660.1247670
Gerety, M.B., Mulrow, C.D., Tuley, M.R., Hazuda, H.P., Lichtenstein, M.J., Bohannon, R., Kanten, D.N., O’Neil, M.B., Gorton, A.: Development and validation of a physical performance instrument for the functionally impaired elderly: the physical disability index (PDI). J. Gerontol. 48(2), M33–M38 (1993)
CrossRef
Google Scholar
Givon, U., Zeilig, G., Achiron, A.: Gait analysis in multiple sclerosis: characterization of temporal-spatial parameters using gaitrite functional ambulation system. Gait Posture 29(1), 138–142 (2009)
CrossRef
Google Scholar
Goonawardene, N., Toh, X.P., Tan, H.-P.: Sensor-driven detection of social isolation in community-dwelling elderly. In: Zhou, J., Salvendy, G. (eds.) ITAP 2017. LNCS, vol. 10298, pp. 378–392. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58536-9_30
CrossRef
Google Scholar
Gupta, P., Bhowmick, B., Pal, A.: Accurate heart-rate estimation from face videos using quality-based fusion. In: IEEE International Conference on Image Processing. IEEE (2017)
Google Scholar
Gupta, P., Bhowmick, B., Pal, A.: Serial fusion of Eulerian and Lagrangian approaches for accurate heart-rate estimation using face videos. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 2834–2837. IEEE (2017)
Google Scholar
Gupta, P., Gupta, P.: An efficient slap fingerprint segmentation and hand classification algorithm. Neurocomputing 142, 464–477 (2014)
CrossRef
Google Scholar
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, p. 10–5244. Citeseer (1988)
Google Scholar
Lee, Y., Ju, Y., Min, C., Kang, S., Hwang, I., Song, J.: CoMon: cooperative ambience monitoring platform with continuity and benefit awareness. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, MobiSys 2012. ACM (2012). http://doi.acm.org/10.1145/2307636.2307641
Li, X., Chen, J., Zhao, G., Pietikainen, M.: Remote heart rate measurement from face videos under realistic situations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4264–4271 (2014)
Google Scholar
Liming, B., Gavino, A.I., Lee, P., Jungyoon, K., Na, L., Pi, T.H.P., Xian, T.H., Buay, T.L., Xiaoping, T., Valera, A., Jia, E.Y., Wu, A., Fox, M.S.: SHINESeniors: personalized services for active ageing-in-place. In: 2015 IEEE First International Smart Cities Conference (ISC2), pp. 1–2, October 2015
Google Scholar
Liu, N., Purao, S., Tan, H.P.: Value-inspired service design in elderly home-monitoring systems. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6, March 2016
Google Scholar
McLeod, D.R., Griffiths, R.R., Bigelow, G.E., Yingling, J.: An automated version of the digit symbol substitution test (DSST). Behav. Res. Methods 14(5), 463–466 (1982)
CrossRef
Google Scholar
Mirelman, A., Herman, T., Brozgol, M., Dorfman, M., Sprecher, E., Schweiger, A., Giladi, N., Hausdorff, J.M.: Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition. PLoS One 7(6), e40297 (2012)
CrossRef
Google Scholar
Morse, J.M., Morse, R.M., Tylko, S.J.: Development of a scale to identify the fall-prone patient. Can. J. Aging/La Revue canadienne du vieillissement 8(4), 366–377 (1989)
CrossRef
Google Scholar
Muir, S.W., Gopaul, K., Montero Odasso, M.M.: The role of cognitive impairment in fall risk among older adults: a systematic review and meta-analysis. Age Ageing 41(3), 299–308 (2012)
CrossRef
Google Scholar
Muro-De-La-Herran, A., Garcia-Zapirain, B., Mendez-Zorrilla, A.: Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors 14(2), 3362–3394 (2014)
CrossRef
Google Scholar
Nandugudi, A., Maiti, A., Ki, T., Bulut, F., Demirbas, M., Kosar, T., Qiao, C., Ko, S.Y., Challen, G.: PhoneLab: a large programmable smartphone testbed. In: Proceedings of First International Workshop on Sensing and Big Data Mining, SENSEMINE 2013, pp. 4:1–4:6. ACM, New York (2013). http://doi.acm.org/10.1145/2536714.2536718
Pfister, A., West, A.M., Bronner, S., Noah, J.A.: Comparative abilities of microsoft kinect and vicon 3d motion capture for gait analysis. J. Med. Eng. Technol. 38(5), 274–280 (2014)
CrossRef
Google Scholar
Poe, S.S., Cvach, M., Dawson, P.B., Straus, H., Hill, E.E.: The Johns Hopkins fall risk assessment tool: post implementation evaluation. J. Nurs. Care Qual. 22(4), 293–298 (2007)
CrossRef
Google Scholar
Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, P.J., Longworth, C., Aucinas, A.: EmotionSense: a mobile phones based adaptive platform for experimental social psychology research. In: Proceedings of the 12th ACM International Conference on Ubiquitous Computing, Ubicomp 2010, pp. 281–290. ACM, New York (2010). http://doi.acm.org/10.1145/1864349.1864393
Raffa, G., Lee, J., Nachman, L., Song, J.: Don’t slow me down: bringing energy efficiency to continuous gesture recognition. In: International Symposium on Wearable Computers (ISWC 2010), pp. 1–8, October 2010
Google Scholar
Ramu Reddy, V., Chakravarty, K., Aniruddha, S.: Person identification in natural static postures using kinect. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 793–808. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_60
CrossRef
Google Scholar
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_34
CrossRef
Google Scholar
Roy, S., Mazumder, O., Chatterjee, D., Sinha, A.: Quantification of postural balance using augmented reality based environment: a pilot study. In: IEEE SENSORS. IEEE (2017, to appear)
Google Scholar
Rubenstein, L.Z., Josephson, K.R., Osterweil, D.: Falls and fall prevention in the nursing home. Clin. Geriatr. Med. 12(4), 881 (1996)
Google Scholar
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 International Conference on Computer Vision, pp. 2564–2571, November 2011
Google Scholar
Scale, B.B., Talking, S.W.W.: How to identify potential fallers in a stroke unit: validity indexes of four test methods. J. Rehabil. Med. 38, 186–191 (2006)
CrossRef
Google Scholar
Sen, S., Subbaraju, V., Misra, A., Balan, R.K., Lee, Y.: Experiences in building a real-world eating recogniser. In: Proceedings of the 4th International on Workshop on Physical Analytics, WPA 2017, pp. 7–12. ACM, New York (2017). http://doi.acm.org/10.1145/3092305.3092306
Sinha, S., Bhowmick, B., Chakravarty, K., Sinha, A., Das, A.: Accurate upper body rehabilitation system using kinect. In: 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 4605–4609. IEEE (2016)
Google Scholar
Steffen, T.M., Hacker, T.A., Mollinger, L.: Age-and gender-related test performance in community-dwelling elderly people: six-minute walk test, berg balance scale, timed up & go test, and gait speeds. Phys. Ther. 82(2), 128–137 (2002)
CrossRef
Google Scholar
Toh, X., Tan, H.X., Liang, H., Tan, H.P.: Elderly medication adherence monitoring with the Internet of Things. In: 2016 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), pp. 1–6, March 2016
Google Scholar
Tripathy, S.R., Chakravarty, K., Sinha, A., Chatterjee, D., Saha, S.K.: Constrained Kalman filter for improving kinect based measurements. In: 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4. IEEE (2017)
Google Scholar
Wang, R., Chen, F., Chen, Z., Li, T., Harari, G., Tignor, S., Zhou, X., Ben-Zeev, D., Campbell, A.T.: StudentLife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp 2014, pp. 3–14. ACM, New York (2014)
Google Scholar
Bootsma-van der Wiel, A., Gussekloo, J., De Craen, A.J., Van Exel, E., Bloem, B.R., Westendorp, R.G.: Walking and talking as predictors of falls in the general population: the Leiden 85-plus study. J. Am. Geriatr. Soc. 51(10), 1466–1471 (2003)
CrossRef
Google Scholar
Yan, B., Chen, G.: AppJoy: personalized mobile application discovery. In: Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, MobiSys 2011. ACM (2011). http://doi.acm.org/10.1145/1999995.2000007
Zammit, G.V., Menz, H.B., Munteanu, S.E.: Reliability of the TekScan MatScan® system for the measurement of plantar forces and pressures during barefoot level walking in healthy adults. J. Foot Ankle Res. 3(1), 11 (2010)
CrossRef
Google Scholar