Social-Textual Query Processing on Graph Database Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10837)


Graph database systems are increasingly being used to store and query large-scale property graphs with complex relationships. Graph data, particularly the ones generated from social networks generally has text associated to the graph. Although graph systems provide support for efficient graph-based queries, there have not been comprehensive studies on how other dimensions, such as text, stored within a graph can work well together with graph traversals. In this paper we focus on a query that can process graph traversal and text search in combination in a graph database system and rank users measured as a combination of their social distance and the relevance of the text description to the query keyword. Our proposed algorithm leverages graph partitioning techniques to speed-up query processing along both dimensions. We conduct experiments on real-world large graph datasets and show benefits of our algorithm compared to several other baseline schemes.


  1. 1.
    Armenatzoglou, N., Papadopoulos, S., Papadias, D.: A general framework for geo-social query processing. PVLDB 6(10), 913–924 (2013)Google Scholar
  2. 2.
    Bahmani, B., Goel, A.: Partitioned multi-indexing: bringing order to social search. In: WWW 2012, pp. 399–408. ACM, New York (2012)Google Scholar
  3. 3.
    Busch, M., Gade, K., Larson, B., Lok, P., Luckenbill, S., Lin, J.: Earlybird: real-time search at Twitter. In: ICDE 2012, pp. 1360–1369 (2012)Google Scholar
  4. 4.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1), 337–348 (2009)Google Scholar
  5. 5.
    Curtiss, M., Becker, I., et al.: Unicorn: a system for searching the social graph. PVLDB 6(11), 1150–1161 (2013)Google Scholar
  6. 6.
    Elbassuoni, S., Blanco, R.: Keyword search over RDF graphs. In: CIKM 2011, pp. 237–242. ACM (2011)Google Scholar
  7. 7.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: ranked keyword search over XML documents. In: SIGMOD 2003, pp. 16–27 (2003)Google Scholar
  9. 9.
    He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs. In: SIGMOD, pp. 305–316 (2007)Google Scholar
  10. 10.
    İnkaya, T.: A parameter-free similarity graph for spectral clustering. Expert Syst. Appl. 42(24), 9489–9498 (2015)CrossRefGoogle Scholar
  11. 11.
    Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96–129 (1998)CrossRefGoogle Scholar
  12. 12.
    Li, Y., Bao, Z., Li, G., Tan, K.: Real time personalized search on social networks. In: ICDE, pp. 639–650 (2015)Google Scholar
  13. 13.
    Li, Z., Lee, K.C.K., Zheng, B., Lee, W., Lee, D.L., Wang, X.: IR-tree: an efficient index for geographic document search. TKDE 23(4), 585–599 (2011)Google Scholar
  14. 14.
    Liu, J., Wang, C., Danilevsky, M., Han, J.: Large-scale spectral clustering on graphs. In: IJCAI 2013, pp. 1486–1492. AAAI Press (2013)Google Scholar
  15. 15.
    Mouratidis, K., Li, J., Tang, Y., Mamoulis, N.: Joint search by social and spatial proximity. In: ICDE, pp. 1578–1579 (2016)Google Scholar
  16. 16.
    Neo4j: Neo4j Graph Database (2017).
  17. 17.
    Qiao, M., Qin, L., Cheng, H., Yu, J.X., Tian, W.: Top-k nearest keyword search on large graphs. Proc. VLDB Endow. 6(10), 901–912 (2013)CrossRefGoogle Scholar
  18. 18.
    Sun, Z., Wang, H., Wang, H., Shao, B., Li, J.: Efficient subgraph matching on billion node graphs. PVLDB 5(9), 788–799 (2012)Google Scholar
  19. 19.
  20. 20.
    Trißl, S., Leser, U.: Fast and practical indexing and querying of very large graphs. In: SIGMOD, pp. 845–856 (2007)Google Scholar
  21. 21.
    Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., de Castro Reis, D., Ribeiro-Neto, B.A.: Efficient search ranking in social networks. In: CIKM, pp. 563–572 (2007)Google Scholar
  22. 22.
    Wang, H., Aggarwal, C.C.: A survey of algorithms for keyword search on graph data. In: Aggarwal, C., Wang, H. (eds.) Managing and Mining Graph Data. Advances in Database Systems, vol. 40, pp. 249–273. Springer, Boston (2010). Scholar
  23. 23.
    Yang, J., McAuley, J.J., Leskovec, J.: Community detection in networks with node attributes. CoRR abs/1401.7267 (2014)Google Scholar
  24. 24.
    Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural attribute similarities. PVLDB 2(1), 718–729 (2009)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Oshini Goonetilleke
    • 1
  • Timos Sellis
    • 2
  • Xiuzhen Zhang
    • 1
  1. 1.RMIT UniversityMelbourneAustralia
  2. 2.Swinburne University of TechnologyMelbourneAustralia

Personalised recommendations