Feature Extraction for Smart Sensing Using Multi-perspectives Transformation

  • Sanad Al-MaskariEmail author
  • Ibrahim A. Ibrahim
  • Xue Li
  • Eimad Abusham
  • Abdulqader Almars
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10837)


Air quality sensing systems, such as e-nose, are one of the complex dynamic systems; due to their sensitivity to electromagnetic interference, humidity, temperature, pressure and airflow. This yield to a Multi-Dependency effect over the output signal. To address the Multi-Dependency effect, we propose a multi-dimensional signal transformation for feature extraction. Our idea is analogous to viewing one huge object from different angles and arriving at different perspectives. Every perspective is partially true, but the final picture can be inferred by combining all perspectives. We evaluated our method extensively on two data sets including a publicly available e-nose dataset generated over a three-year period. Our results show higher performance in term of accuracies, F-measure, and stability when compared to standard methods.


E-nose Air quality Feature extraction Time series Pattern recognition Classification Sensors 


  1. 1.
    Al-Maskari, S., Li, X., Liu, Q.: An effective approach to handling noise and drift in electronic noses. In: Wang, H., Sharaf, M.A. (eds.) ADC 2014. LNCS, vol. 8506, pp. 223–230. Springer, Cham (2014). Scholar
  2. 2.
    Al-Maskari, S., Saini, D., Omar, W.: Cyber infrastructure and data quality for environmental pollution control in Oman. In: Proceedings of the 2010 DAMD International Conference on Data Analysis, Data Quality and Metada, vol. 71 (2010)Google Scholar
  3. 3.
    Al Maskari, S., Kumar, D., Chiffings, T.: Data mining for environment monitoring. In: International Conference on Software Technology and Engineering, ICSTE 2012. ASME Press (2012)Google Scholar
  4. 4.
    Al Maskari, S., Li, X.: E-nose pattern recognition and drift compensation methods. In: Electronic Nose Technologies and Advances in Machine Olfaction, pp. 38–57. IGI Global (2018)Google Scholar
  5. 5.
    Vergara, A., Vembu, S., Ayhan, T., Ryan, M.A., Homer, M.L., Huerta, R.: Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B: Chem. 166–167, 320–329 (2012)CrossRefGoogle Scholar
  6. 6.
    Llobet, E., Brezmes, J., Ionescu, R., Vilanova, X., Al-Khalifa, S., Gardner, J., Brsan, N., Correig, X.: Wavelet transform and fuzzy ARTMAP-based pattern recognition for fast gas identification using a micro-hotplate gas sensor. Sens. Actuators B: Chem. 83(13), 238–244 (2002). Selected Papers from TRANSDUCERS 2001 EUROSENSORS XVCrossRefGoogle Scholar
  7. 7.
    Nakata, S., Nakamura, H., Yoshikawa, K.: New strategy for the development of a gas sensor based on the dynamic characteristics: principle and preliminary experiment. Sens. Actuators B: Chem. 8(2), 187–189 (1992)CrossRefGoogle Scholar
  8. 8.
    Al-Maskari, S., Bélisle, E., Li, X., Le Digabel, S., Nawahda, A., Zhong, J.: Classification with quantification for air quality monitoring. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016. LNCS, vol. 9651, pp. 578–590. Springer, Cham (2016). Scholar
  9. 9.
    Al-Maskari, S., Xu, Z., Guo, W., Zhao, X., Li, X.: Bio-inspired learning approach for electronic nose. Computing 100, 387–402 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Llobet, E., Brezmes, J., Vilanova, X., Sueiras, J.E., Correig, X.: Qualitative and quantitative analysis of volatile organic compounds using transient and steady-state responses of a thick-film tin oxide gas sensor array. Sens. Actuators B: Chem. 41(1), 13–21 (1997)CrossRefGoogle Scholar
  11. 11.
    Carmel, L., Levy, S., Lancet, D., Harel, D.: A feature extraction method for chemical sensors in electronic noses. Sens. Actuators B: Chem. 93(13), 67–76 (2003). Proceedings of the Ninth International Meeting on Chemical SensorsCrossRefGoogle Scholar
  12. 12.
    Zhang, S., Xie, C., Zeng, D., Zhang, Q., Li, H., Bi, Z.: A feature extraction method and a sampling system for fast recognition of flammable liquids with a portable E-nose. Sens. Actuators B: Chem. 124(2), 437–443 (2007)CrossRefGoogle Scholar
  13. 13.
    Yin, Y., Yu, H., Zhang, H.: A feature extraction method based on wavelet packet analysis for discrimination of Chinese vinegars using a gas sensors array. Sens. Actuators B: Chem. 134(2), 1005–1009 (2008)CrossRefGoogle Scholar
  14. 14.
    Yan, J., Guo, X., Duan, S., Jia, P., Wang, L., Peng, C., Zhang, S.: Electronic nose feature extraction methods: a review. Sensors 15(11), 27804–27831 (2015)CrossRefGoogle Scholar
  15. 15.
    Lohmann, A.W., Mendlovic, D., Zalevsky, Z.: Fractional Hilbert transform. Opt. Lett. 21(4), 281–283 (1996)CrossRefGoogle Scholar
  16. 16.
    Nahar, V., Al-Maskari, S., Li, X., Pang, C.: Semi-supervised learning for cyberbullying detection in social networks. In: Wang, H., Sharaf, M.A. (eds.) ADC 2014. LNCS, vol. 8506, pp. 160–171. Springer, Cham (2014). Scholar
  17. 17.
    Sophian, A., Tian, G.Y., Taylor, D., Rudlin, J.: A feature extraction technique based on principal component analysis for pulsed Eddy current NDT. NDT & E Int. 36(1), 37–41 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sanad Al-Maskari
    • 1
    • 2
    Email author
  • Ibrahim A. Ibrahim
    • 1
  • Xue Li
    • 1
  • Eimad Abusham
    • 2
  • Abdulqader Almars
    • 1
  1. 1.School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.Faculty of Computing and Information TechnologySohar UniversitySoharOman

Personalised recommendations