TSAUB: A Temporal-Sentiment-Aware User Behavior Model for Personalized Recommendation

  • Qinyong Wang
  • Hongzhi YinEmail author
  • Hao Wang
  • Zi Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10837)


Personalized recommender system has become an essential means to help people discover attractive and interesting items. We find that to buy an item, a user is influenced not only by her intrinsic interests and temporal contexts, but also by the crowd sentiment to this item. Users tend to refuse to accept the recommended items whose most reviews are negative. In light of this, we propose a temporal-sentiment-aware user behavior model (TSAUB) to learn personal interests, temporal contexts (i.e., temporal preferences of the public) and crowd sentiment from user review data. Based on the learnt knowledge from TSAUB, we design a temporal-sentiment-aware recommender system. To improve the training efficiency of TSAUB, we develop a distributed learning algorithm for model parameter estimation using the Spark framework. Extensive experiments have been performed on four Amazon datasets, and the results show that our recommender system significantly outperforms the state-of-the-arts by making more effective and efficient recommendations.


Temporal recommendation User behavior modeling Crowd sentiment 



This work was supported by ARC Discovery Early Career Researcher Award (Grant No. DE160100308), ARC Discovery Project (Grant No. DP170103954) and New Staff Research Grant of The University of Queensland (Grant No.613134).


  1. 1.
    Bi, B., Tian, Y., Sismanis, Y., Balmin, A., Cho, J.: Scalable topic-specific influence analysis on microblogs. In: WSDM, pp. 513–522 (2014)Google Scholar
  2. 2.
    Chen, W.Y., Chu, J.C., Luan, J., Bai, H., Wang, Y., Chang, E.Y.: Collaborative filtering for orkut communities: discovery of user latent behavior. In: WWW, pp. 681–690 (2009)Google Scholar
  3. 3.
    Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on top-n recommendation tasks. In: RecSys, pp. 39–46 (2010)Google Scholar
  4. 4.
    García-Cumbreras, M.Á., Montejo-Ráez, A., Díaz-Galiano, M.C.: Pessimists and optimists: improving collaborative filtering through sentiment analysis. Expert Syst. Appl. 40(17), 6758–6765 (2013)CrossRefGoogle Scholar
  5. 5.
    Herr, P.M., Kardes, F.R., Kim, J.: Effects of word-of-mouth and product-attribute information on persuasion: an accessibility-diagnosticity perspective. J. Consum. Res. 17(4), 454–462 (1991)CrossRefGoogle Scholar
  6. 6.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: KDD, pp. 426–434 (2008)Google Scholar
  7. 7.
    Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)CrossRefGoogle Scholar
  8. 8.
    Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: WWW, pp. 661–670 (2010)Google Scholar
  9. 9.
    McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rating dimensions with review text. In: RecSys, pp. 165–172 (2013)Google Scholar
  10. 10.
    Pappas, N., Popescu-Belis, A.: Sentiment analysis of user comments for one-class collaborative filtering over ted talks. In: SIGIR, pp. 773–776 (2013)Google Scholar
  11. 11.
    Pero, Š., Horváth, T.: Opinion-driven matrix factorization for rating prediction. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 1–13. Springer, Heidelberg (2013). Scholar
  12. 12.
    Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000 (2010)Google Scholar
  13. 13.
    Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P.: The author-topic model for authors and documents. In: UAI, pp. 487–494 (2004)Google Scholar
  14. 14.
    Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: WWW, pp. 285–295 (2001)Google Scholar
  15. 15.
    Singh, V.K., Mukherjee, M., Mehta, G.K.: Combining collaborative filtering and sentiment classification for improved movie recommendations. In: Sombattheera, C., Agarwal, A., Udgata, S.K., Lavangnananda, K. (eds.) MIWAI 2011. LNCS (LNAI), vol. 7080, pp. 38–50. Springer, Heidelberg (2011). Scholar
  16. 16.
    Stoyanovich, J., Amer-Yahia, S., Marlow, C., Yu, C.: Leveraging tagging to model user interests in del. icio. us. In: AAAI, pp. 104–109 (2008)Google Scholar
  17. 17.
    Tang, J., Wu, S., Sun, J., Su, H.: Cross-domain collaboration recommendation. In: KDD, pp. 1285–1293 (2012)Google Scholar
  18. 18.
    Xie, M., Yin, H., Wang, H., Xu, F., Chen, W., Wang, S.: Learning graph-based poi embedding for location-based recommendation. In: CIKM, pp. 15–24 (2016)Google Scholar
  19. 19.
    Xiong, L., Chen, X., Huang, T.K., Schneider, J.G., Carbonell, J.G.: Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: SDM, pp. 211–222 (2010)CrossRefGoogle Scholar
  20. 20.
    Xu, Z., Zhang, Y., Wu, Y., Yang, Q.: Modeling user posting behavior on social media. In: SIGIR, pp. 545–554 (2012)Google Scholar
  21. 21.
    Yin, H., Cui, B., Chen, L., Hu, Z., Zhang, C.: Modeling location-based user rating profiles for personalized recommendation. TKDE 9(3), 19 (2015)Google Scholar
  22. 22.
    Yin, H., Cui, B., Chen, L., Hu, Z., Zhou, X.: Dynamic user modeling in social media systems. TOIS 33(3), 10 (2015)CrossRefGoogle Scholar
  23. 23.
    Yin, H., Cui, B., Lu, H., Huang, Y., Yao, J.: A unified model for stable and temporal topic detection from social media data. In: ICDE, pp. 661–672 (2013)Google Scholar
  24. 24.
    Yin, H., Cui, B., Zhou, X., Wang, W., Huang, Z., Sadiq, S.: Joint modeling of user check-in behaviors for real-time point-of-interest recommendation. TOIS 35(2), 11 (2016)CrossRefGoogle Scholar
  25. 25.
    Yin, H., Sun, Y., Cui, B., Hu, Z., Chen, L.: LCARS: a location-content-aware recommender system. In: KDD, pp. 221–229 (2013)Google Scholar
  26. 26.
    Yin, H., Wang, W., Wang, H., Chen, L., Zhou, X.: Spatial-aware hierarchical collaborative deep learning for poi recommendation. TKDE 29(11), 2537–2551 (2017)Google Scholar
  27. 27.
    Yin, H., Zhou, X., Cui, B., Wang, H., Zheng, K., Nguyen, Q.V.H.: Adapting to user interest drift for poi recommendation. TKDE 28(10), 2566–2581 (2016)Google Scholar
  28. 28.
    Yin, H., Zhou, X., Shao, Y., Wang, H., Sadiq, S.: Joint modeling of user check-in behaviors for point-of-interest recommendation. In: CIKM, pp. 1631–1640 (2015)Google Scholar
  29. 29.
    Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: NSDI, p. 2 (2012)Google Scholar
  30. 30.
    Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: HotCloud, p. 10 (2010)Google Scholar
  31. 31.
    Zhang, Y., Lai, G., Zhang, M., Zhang, Y., Liu, Y., Ma, S.: Explicit factor models for explainable recommendation based on phrase-level sentiment analysis. In: SIGIR, pp. 83–92 (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
  2. 2.360 Search LabBeijingChina

Personalised recommendations