30 min-Ahead Gridded Solar Irradiance Forecasting Using Satellite Data

  • Todd Taomae
  • Lipyeow Lim
  • Duane Stevens
  • Dora Nakafuji
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10837)

Abstract

Solar irradiance forecasting is critical to balancing solar energy production and energy consumption in the electric grid; however, solar irradiance forecasting is dependent on meteorological conditions and, in particular, cloud cover, which are captured in satellite imagery. In this paper we present a method for short-term solar irradiance forecasting using gridded global horizontal irradiance (GHI) data estimated from satellite images. We use this data to first create a simple linear regression model with a single predictor variable. We then discuss various methods to extend and improve the model. We found that adding predictor variables and partitioning the data to create multiple models both reduced prediction errors under certain circumstances. However, both these techniques were outperformed by applying a data transformation before training the linear regression model.

References

  1. 1.
    Brinkworth, B.: Autocorrelation and stochastic modelling of insolation sequences. Solar Energy 19(4), 343–347 (1977)CrossRefGoogle Scholar
  2. 2.
    Cao, J., Cao, S.: Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis. Energy 31(15), 3435–3445 (2006)CrossRefGoogle Scholar
  3. 3.
    Cao, J., Lin, X.: Application of the diagonal recurrent wavelet neural network to solar irradiation forecast assisted with fuzzy technique. Eng. Appl. Artif. Intell. 21(8), 1255–1263 (2008)CrossRefGoogle Scholar
  4. 4.
    Cao, S., Cao, J.: Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis. Appl. Therm. Eng. 25(2), 161–172 (2005)CrossRefGoogle Scholar
  5. 5.
    Chow, C.W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J., Washom, B.: Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed. Solar Energy 85(11), 2881–2893 (2011)CrossRefGoogle Scholar
  6. 6.
    Diagne, M., David, M., Lauret, P., Boland, J., Schmutz, N.: Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 27, 65–76 (2013)CrossRefGoogle Scholar
  7. 7.
    Dudhia, J., Gill, D., Henderson, T., Klemp, J., Skamarock, W., Wang, W.: The weather research and forecast model: software architecture and performance. In: Proceedings of the Eleventh ECMWF Workshop on the Use of High Performance Computing in Meteorology, pp. 156–168. World Scientific (2005)Google Scholar
  8. 8.
    National Centers for Environmental Information: Global forecast system (GFS). http://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-forcast-system-gfs
  9. 9.
    Guarnieri, R., Martins, F., Pereira, E., Chou, S.C.: Solar radiation forecast using artificial neural networks. Nat. Inst. Space Res. 1–34 (2008)Google Scholar
  10. 10.
    Hammer, A., Heinemann, D., Lorenz, E., Lückehe, B.: Short-term forecasting of solar radiation: a statistical approach using satellite data. Solar Energy 67(1), 139–150 (1999)CrossRefGoogle Scholar
  11. 11.
    Heinemann, D., Lorenz, E., Girodo, M.: Forecasting of Solar Radiation. Solar Energy Resource Management for Electricity Generation from Local Level to Global Scale. Nova Science Publishers, New York (2006)Google Scholar
  12. 12.
    Hocaoğlu, F.O., Gerek, Ö.N., Kurban, M.: Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks. Solar Energy 82(8), 714–726 (2008)CrossRefGoogle Scholar
  13. 13.
    Hokoi, S., Matsumoto, M., Kagawa, M.: Stochastic models of solar radiation and outdoor temperature. ASHRAE Transactions (American Society of Heating, Refrigerating and Air-Conditioning Engineers); (United States) 96(CONF-9006117-) (1990)Google Scholar
  14. 14.
    Huang, J., Korolkiewicz, M., Agrawal, M., Boland, J.: Forecasting solar radiation on an hourly time scale using a coupled autoregressive and dynamical system (cards) model. Solar Energy 87, 136–149 (2013)CrossRefGoogle Scholar
  15. 15.
    Ji, W., Chee, K.C.: Prediction of hourly solar radiation using a novel hybrid model of arma and TDNN. Solar Energy 85(5), 808–817 (2011)CrossRefGoogle Scholar
  16. 16.
    Lorenz, E., Hammer, A., Heinemann, D.: Short term forecasting of solar radiation based on satellite data. In: EUROSUN2004 (ISES Europe Solar Congress), pp. 841–848 (2004)Google Scholar
  17. 17.
    Martins, F.R., Pereira, E.B., Guarnieri, R.A.: Solar radiation forecast using artificial neural networks. Int. J. Energy Sci. 2(6) (2012)Google Scholar
  18. 18.
    European Centre for Medium-Range Weather Forecasts: Modeling and prediction. http://www.ecmwf.int/en/research/modelling-and-prediction
  19. 19.
    Mellit, A., Benghanem, M., Kalogirou, S.: An adaptive wavelet-network model for forecasting daily total solar-radiation. Appl. Energy 83(7), 705–722 (2006)CrossRefGoogle Scholar
  20. 20.
    Perez, R., Moore, K., Kmiecik, M., Chain, C., Ineichen, P., George, R., Vignola, F.: A new operational satellite-to-irradiance model-description and validation. In: Proceedings of the Solar Conference, pp. 315–322 (2002)Google Scholar
  21. 21.
    Zhang, G.P.: Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50, 159–175 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Todd Taomae
    • 1
  • Lipyeow Lim
    • 1
  • Duane Stevens
    • 1
  • Dora Nakafuji
    • 2
  1. 1.University of Hawai‘i at MānoaHonoluluUSA
  2. 2.Hawaiian Electric CompanyHonoluluUSA

Personalised recommendations