• Joachim Gwinner
  • Ernst Peter Stephan
Part of the Springer Series in Computational Mathematics book series (SSCM, volume 52)


This chapter gives an introduction to the theory of approximation methods for the solution of operator equations and for the solution of related variational problems. In the first section we formulate the basic approximation problems and their setting.


  1. 56.
    D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44 (Springer, Heidelberg, 2013)CrossRefGoogle Scholar
  2. 60.
    D. Braess, Finite Elements, 3rd edn. (Cambridge University Press, Cambridge, 2007). Theory, Fast Solvers, and Applications in Elasticity Theory. Translated from the German by L.L. SchumakerGoogle Scholar
  3. 65.
    F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15 (Springer, New York, 1991)Google Scholar
  4. 244.
    S. Hildebrandt, E. Wienholtz, Constructive proofs of representation theorems in separable Hilbert space. Commun. Pure Appl. Math. 17, 369–373 (1964)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Joachim Gwinner
    • 1
  • Ernst Peter Stephan
    • 2
  1. 1.Fakultät für Luft- und RaumfahrttechnikUniversität der Bundeswehr MünchenNeubiberg/MünchenGermany
  2. 2.Institut für Angewandte MathematikLeibniz Universität HannoverHannoverGermany

Personalised recommendations