Stability Analysis of Frame Slotted Aloha Protocol

  • Jihong Yu
  • Lin Chen


Frame Slotted Aloha (FSA) protocol has been widely applied in Radio Frequency Identification (RFID) systems. None of work, however, has been done on the FSA stability despite its fundamental importance both on the theoretical characterisation of FSA performance and its effective operation in practical systems. In order to bridge this gap, this chapter investigates the stability of p-persistent FSA by focusing on two physical layer models: single/multipacket reception capabilities. Technically, we model the FSA system backlog as a Markov chain with its states being backlog size at the beginning of each frame. The objective is to analyze the ergodicity of the Markov chain. By employing drift analysis, we obtain the closed-form conditions for the stability of FSA. To characterise system behavior in the instability region, we demonstrate the existence of transience of the backlog Markov chain. The analytical results are validated by the numerical experiments.


  1. 1.
    N. Abramson, The Aloha system: another alternative for computer communications, in Proceedings of Fall 1970 AFIPS Fall Joint Computer Conference (1970), pp. 281–285Google Scholar
  2. 2.
    L.G. Robert, ALOHA packet system with and without slots and capture. ACM SIGCOMM Comput. Commun. Rev. 5(2), 28–42 (1975)CrossRefGoogle Scholar
  3. 3.
    H. Okada, Y. Igarashi, Y. Nakanishi, Analysis and application of framed ALOHA channel in satellite packet switching networks-fadra method. Electron. Commun. Jpn. 60, 72–80 (1977)Google Scholar
  4. 4.
    H.-J. Noh, J.-K. Lee, J.-S. Lim, Anc-aloha: analog network coding ALOHA for satellite networks. IEEE Commun. Lett. 18(6), 957–960 (2014)CrossRefGoogle Scholar
  5. 5.
    S. Vasudevan, D. Towsley, D. Goeckel, R. Khalili, Neighbor discovery in wireless networks and the coupon collector’s problem, in ACM MobiCom (2009), pp. 181–192Google Scholar
  6. 6.
    W. Zeng, S. Vasudevan, X. Chen, B. Wang, A. Russell, W. Wei, Neighbor discovery in wireless networks with multipacket reception, in ACM MobiHoc (2011), p. 3Google Scholar
  7. 7.
    H. Wu, C. Zhu, R.J. La, X. Liu, Fasa: accelerated S-ALOHA using access history for event-driven M2M communications. IEEE/ACM Trans. Netw. 21(6), 1904–1917 (2013)CrossRefGoogle Scholar
  8. 8.
    F. Vázquez Gallego, J. Alonso-Zarate, L. Alonso, Energy and delay analysis of contention resolution mechanisms for machine-to-machine networks based on low-power WiFi, in IEEE ICC (2013), pp. 2235–2240Google Scholar
  9. 9.
    Y. Zhu, W. Jiang, Q. Zhang, H. Guan, Energy-efficient identification in large-scale RFID systems with handheld reader. IEEE Trans. Parallel Distrib. Syst. 25(5), 1211–1222 (2014)CrossRefGoogle Scholar
  10. 10.
    X. Liu, K. Li, G. Min, K. Lin, B. Xiao, Y. Shen, W. Qu, Efficient unknown tag identification protocols in large-scale RFID systems. IEEE Trans. Parallel Distrib. Syst. 25(12), 3145–3155 (2014)CrossRefGoogle Scholar
  11. 11.
    EPCglobal Inc., Radio-frequency identity protocols class-1 generation-2 UHF RFID protocol for communications at 860 MHz–960 MHz version 1.0.9, EPCglobal Inc., vol. 17 (2005)Google Scholar
  12. 12.
    C. Bordenave, D. McDonald, A. Proutiere, Asymptotic stability region of slotted ALOHA. IEEE Trans. Inf. Theory 58(9), 5841–5855 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    S.C. Kompalli, R.R. Mazumdar, On the stability of finite queue slotted aloha protocol. IEEE Trans. Inf. Theory 59(10), 6357–6366 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    F. Farhadi, F. Ashtiani, Stability region of a slotted aloha network with k-exponential backoff. arXiv preprint:1406.4448 (2014)Google Scholar
  15. 15.
    N. Johnson, S. Kotz, Urn Models and Their Application: An Approach to Modern Discrete Probability Theory (Wiley, New York, 1977)zbMATHGoogle Scholar
  16. 16.
    B.S. Tsybakov, V.A. Mikhailov, Ergodicity of a slotted ALOHA system. Probl. Peredachi Inf. 15(4), 73–87 (1979)MathSciNetGoogle Scholar
  17. 17.
    R.R. Rao, A. Ephremides, On the stability of interacting queues in a multiple-access system. IEEE Trans. Inf. Theory 34(5), 918–930 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    W. Szpankowski, Stability conditions for some distributed systems: buffered random access systems. Adv. Appl. Probab. 26(2), 498–515 (1994)MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Ghez, S. Verdu, S.C. Schwartz, Stability properties of slotted Aloha with multipacket reception capability. IEEE Trans. Autom. Control 33(7), 640–649 (1988)MathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Ghez, S. Verdu, S.C. Schwartz, Optimal decentralized control in the random access multipacket channel. IEEE Trans. Autom. Control 34(11), 1153–1163 (1989)MathSciNetCrossRefGoogle Scholar
  21. 21.
    J. Sant, V. Sharma, Performance analysis of a slotted-ALOHA protocol on a capture channel with fading. Queueing Syst. 34(1–4), 1–35 (2000)MathSciNetCrossRefGoogle Scholar
  22. 22.
    V. Naware, G. Mergen, L. Tong, Stability and delay of finite-user slotted ALOHA with multipacket reception. IEEE Trans. Inf. Theory 51(7), 2636–2656 (2005)MathSciNetCrossRefGoogle Scholar
  23. 23.
    H. Inaltekin, M. Chiang, H.V. Poor, S.B. Wicker, Selfish random access over wireless channels with multipacket reception. IEEE J. Sel. Areas Commun. 30(1), 138–152 (2012)CrossRefGoogle Scholar
  24. 24.
    J. Jeon, A. Ephremides, On the stability of random multiple access with stochastic energy harvesting. IEEE J. Sel. Areas Commun. 33(3), 571–584 (2015)CrossRefGoogle Scholar
  25. 25.
    J.E. Wieselthier, A. Ephremides, A. Larry, An exact analysis and performance evaluation of framed ALOHA with capture. IEEE Trans. Commun. 37(2), 125–137 (1989)CrossRefGoogle Scholar
  26. 26.
    F.C. Schoute, Dynamic frame length ALOHA. IEEE Trans. Commun. 31(4), 565–568 (1983)CrossRefGoogle Scholar
  27. 27.
    Z.G. Prodanoff, Optimal frame size analysis for framed slotted AlOHA based RFID networks. Comput. Commun. 33(5), 648–653 (2010)CrossRefGoogle Scholar
  28. 28.
    L. Barletta, F. Borgonovo, M. Cesana, A formal proof of the optimal frame setting for dynamic-frame aloha with known population size. IEEE Trans. Inf. Theory 60(11), 7221–7230 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    H. Vogt, Efficient object identification with passive RFID tags, in International Conference on Pervasive Computing (2002), pp. 98–113Google Scholar
  30. 30.
    A.G. Pakes, Some conditions for ergodicity and recurrence of Markov chains. Oper. Res. 17(6), 1058–1061 (1969)MathSciNetCrossRefGoogle Scholar
  31. 31.
    M. Kaplan, A sufficient condition for nonergodicity of a Markov chain. IEEE Trans. Inf. Theory 25(4), 470–471 (1979)MathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized Algorithms and Probabilistic Analysis (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  33. 33.
    J.F. Mertens, E.S. Cahn, S. Zamir, Necessary and sufficient conditions for recurrence and transience of Markov chains, in terms of inequalities. J. Appl. Probab. 15(4), 848–851 (1978)MathSciNetCrossRefGoogle Scholar
  34. 34.
    W. Feller, An Introduction to Probability Theory and its Applications, vol. 2 (Wiley, Hoboken, 2008)zbMATHGoogle Scholar
  35. 35.
    B. Chen, Z. Zhou, H. Yu, Understanding RFID counting protocols, in ACM MobiHoc (2013), pp. 291–302Google Scholar
  36. 36.
    J. Yu, L. Chen, From static to dynamic tag population estimation: an extended Kalman Filter perspective. arXiv preprint:1511.08355 (2015)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Jihong Yu
    • 1
  • Lin Chen
    • 2
  1. 1.Simon Fraser UniversityBurnabyCanada
  2. 2.Laboratoire de Recherche en InformatiqueUniversity of Paris-SudOrsayFrance

Personalised recommendations