Skip to main content

Effect of Drought Stress and Utility of Transcriptomics in Identification of Drought Tolerance Mechanisms in Maize

  • Chapter
  • First Online:
Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 20))

Abstract

Maize crop encounters a number of abiotic and biotic stresses which reduce the production and the productivity . Abiotic stresses such as drought are unpredicted environmental disturbances during the crop growth which often lead to reduced crop yield or complete crop loss in some cases. Drought occurring at flowering leads to greater yield losses than when it occurs at other developmental stages. Plant responses at various levels such as morphological, physiological , biochemical and molecular changes to cope up with the stress. It is very important to understand the genes involved in drought tolerance as well and their interactions to breed tolerant hybrids in maize. Transcriptome profiling is useful to understand the whole spectrum of genes expressed under drought condition. The assay will be useful to decipher the genes involved in specific pathways and with the help of in silico analyses, interactions of target genes can be studied. Several transcriptome studies have been carried out in maize in different stages and in tissues under drought stress . Genes involved in detoxification, stomatal regulation , photosynthesis, hormone signaling , root architecture and sugar metabolism pathways are considered as important to achieve drought tolerance . The genes identified through gene expression assays could be used as candidate genes in selection programmes to develop drought tolerant hybrids in maize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Yamaguchi-Shinozaki K, Urao T et al (1997) Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandersson E, Fraysse L, Sjövall-Larsen S et al (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484

    CAS  PubMed  Google Scholar 

  • Anjum S, Xie X, Wang L (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Anjum F, Yaseen M, Rasool E et al (2003) Water stress in barley (Hordeum vulgare L.). I. Effect on morphological characters. Pak J Agric Sci 40:43–44

    Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci 82:1227–1238

    CAS  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. CRC Crit Rev Plant Sci 13:17–42

    Google Scholar 

  • Badawi GH, Kawano N, Yamauchi Y et al (2004) Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiol Plant 121:231–238

    CAS  PubMed  Google Scholar 

  • Barabaschi D, Guerra D, Lacrima K et al (2011) Emerging knowledge from genome sequencing of crop species. Mol Biotechnol 50(3):250–266

    Google Scholar 

  • Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38

    PubMed  Google Scholar 

  • Byrne PF, Bolanos J, Edmeades GO, Eaton DL (1995) Gains from selection under drought versus multilocation testing in related tropical maize populations. Crop Sci 35:63–69

    Google Scholar 

  • Carpenter JF, Crowe LM, Crowe JH (1987) Stabilization of phosphofructokinase with sugars during freeze-drying: characterization of enhanced protection in the presence of divalent cations. BBA Gen Subj 923:109–115

    CAS  Google Scholar 

  • Castillejo MÁ, Maldonado AM, Ogueta S, Jorrín JV (2008) Proteomic analysis of responses to drought stress in sunflower (Helianthus annuus) leaves by 2DE gel electrophoresis and mass spectrometry. Open Proteom J 1:59–71

    CAS  Google Scholar 

  • Chaves MM, Chaves MM (1991) Effects of water deficits on carbon assimilation. J Exp Bot 42:1–16

    CAS  Google Scholar 

  • Chen J-H, Jiang H-W, Hsieh E-J et al (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol 158:340–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chugh V, Kaur N, Gupta AK (2011) Evaluation of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. Indian J Biochem Biophys 48:47–53

    CAS  PubMed  Google Scholar 

  • Cornic G (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis. Trends Plant Sci 5:187–188

    Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    CAS  PubMed  Google Scholar 

  • Davletova S, Schlauch K, Coutu J, Mittler R (2005) The zinc-finger protein zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Denmead OT, Shaw RH (1960) The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agron J 52:272–274

    Google Scholar 

  • Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Sci 4:397

    PubMed  PubMed Central  Google Scholar 

  • Efeoglu B, Ekmekci Y, Cicek N (2009) Physiological responses of three maize cultivars to drought stress and recovery. S Afr J Bot 75:34–42

    Google Scholar 

  • Eveland AL, Satoh-Nagasawa N, Goldshmidt A et al (2010) Digital gene expression signatures for maize development. Plant Physiol 154:1024–1039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N et al (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Google Scholar 

  • Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 1–33

    Google Scholar 

  • Filichkin SA, Priest HD, Givan SA et al (2010) Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res 20:45–58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flexas J, Bota J, Loreto F et al (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in c(3) plants. Plant Biol 6:269–279

    CAS  PubMed  Google Scholar 

  • Flexas J, Diaz-Espejo A, Galmés J et al (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    CAS  PubMed  Google Scholar 

  • Furihata T, Maruyama K, Fujita Y et al (2006) Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc Natl Acad Sci USA 103:1988–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galle A, Csiszar J, Benyo D et al (2013) Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: biosynthesis and function of ABA in stress responses. J Plant Physiol 170:1389–1399

    CAS  PubMed  Google Scholar 

  • Ge TD, Sui FG, Bai LP et al (2006) Effects of water stress on the protective enzyme activities and lipid peroxidation in roots and leaves of summer maize. Agric Sci China 5:291–298

    Google Scholar 

  • Goicoechea N, Antolin MC, Sanchez-Diaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:989–997

    CAS  Google Scholar 

  • Gonzalez EM, Gordon AJ, James CL, Arrese-lgor C (1995) The role of sucrose synthase in the response of soybean nodules to drought. J Exp Bot 46:1515–1523

    CAS  Google Scholar 

  • Hansey CN, Vaillancourt B, Sekhon RS et al (2012) Maize (Zea mays L.) genome diversity as revealed by rna-sequencing. PLoS One. https://doi.org/10.1371/journal.pone.0033071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151

    Google Scholar 

  • Hayano-Kanashiro C, Calderón-Vásquez C, Ibarra-Laclette E et al (2009) Analysis of gene expression and physiological responses in three Mexican maize landraces under drought stress and recovery irrigation. PLoS One. https://doi.org/10.1371/journal.pone.0007531

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrero M, Johnson R (1981) Drought stress and its effects on maize reproductive systems. Crop Sci 21:105–110

    Google Scholar 

  • Humbert S, Subedi S, Cohn J et al (2013) Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses. BMC Genom 14:3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hund A, Trachsel S, Stamp P (2009) Growth of axile and lateral roots of maize: I. Development of a phenotying platform. Plant Soil 325:335–349

    CAS  Google Scholar 

  • Hurkman WJ, McCue KF, Altenbach SB et al (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci 164:873–881

    CAS  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

    CAS  PubMed  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T et al (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    CAS  PubMed  Google Scholar 

  • Jaleel CA, Gopi R, Gomathinayagam M, Panneerselvam R (2008) Effects of calcium chloride on metabolism of salt-stressed Dioscorea rotundata. Acta Biol Cracov Ser Bot 50:63–67

    Google Scholar 

  • Jang JY, Kim DG, Kim YO et al (2004) An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Mol Biol 54:713–725

    CAS  PubMed  Google Scholar 

  • Johansen C, Baldev B, Brouwer J (1994) Biotic and abiotic stresses constraining productivity of cool season food legumes in Asia, Africa and Oceania. Seas Food Legum 19:175–194

    Google Scholar 

  • Johnson SM, Lim F-L, Finkler A et al (2014) Transcriptomic analysis of Sorghum bicolor responding to combined heat and drought stress. BMC Genom 15:456

    PubMed  PubMed Central  Google Scholar 

  • Kage H, Kochler M, Stützel H (2004) Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and simulation. Eur J Agron 20:379–394

    Google Scholar 

  • Kakumanu A, Ambavaram MMR, Klumas C et al (2012) Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol 160:846–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur K, Gupta AK, Kaur N (2007) Effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism in seedlings of wheat cultivars. Indian J Biochem Biophys 44:223–230

    CAS  PubMed  Google Scholar 

  • Kilian J, Peschke F, Berendzen KW et al (2012) Prerequisites, performance and profits of transcriptional profiling the abiotic stress response. Biochim Biophys Acta Gene Regul Mech 1819:166–175

    CAS  Google Scholar 

  • Kim MJ, Park M-J, Seo PJ et al (2012) Controlled nuclear import of the transcription factor NTL6 reveals a cytoplasmic role of SnRK2.8 in the drought-stress response. Biochem J 448:353–363

    CAS  PubMed  Google Scholar 

  • Kimata Y, Hase T (1989) Localization of ferredoxin isoproteins in mesophyll and bundle sheath cells in maize leaf. Plant Physiol 89:1193–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kingston-Smith AH, Foyer CH (2000) Bundle sheath proteins are more sensitive to oxidative damage than those of the mesophyll in maize leaves exposed to paraquat or low temperatures. J Exp Bot 51:123–130

    CAS  PubMed  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krasensky J, Jonak C (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot 63:1593–1608

    CAS  PubMed  Google Scholar 

  • Kusaka M, Ohta M, Fujimura T (2005) Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet. Physiol Plant 125:474–489

    CAS  Google Scholar 

  • Kwon JM, Goate AM (2000) The candidate gene approach. Alcohol Res Health 24:164–168

    Google Scholar 

  • Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 53:699–705

    CAS  PubMed  Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    CAS  PubMed  Google Scholar 

  • Lawson T, Oxborough K, Morison JIL, Baker NR (2003) The responses of guard and mesophyll cell photosynthesis to CO2, O2, light, and water stress in a range of species are similar. J Exp Bot 54:1743–1752

    CAS  PubMed  Google Scholar 

  • Li B, Wei A, Song C et al (2008a) Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnol J 6:146–159

    CAS  PubMed  Google Scholar 

  • Li W-X, Oono Y, Zhu J et al (2008b) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and post-transcriptionally to promote drought resistance. Plant Cell 20:2238–2251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Ponnala L, Gandotra N et al (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    CAS  PubMed  Google Scholar 

  • Li Z, Shi P, Peng Y (2013) Improved drought tolerance through drought preconditioning associated with changes in antioxidant enzyme activities, gene expression and osmoregulatory solutes accumulation in white clover (Trifolium repens L.). Plant Omics 6:481–489

    CAS  Google Scholar 

  • Liljenberg CS (1992) The effects of water deficit stress on plant membrane lipids. Prog Lipid Res 31:335–343

    CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10:1391–1406

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Wang X, Wang H et al (2013) Genome-Wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet. https://doi.org/10.1371/journal.pgen.1003790

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu SC, Jin JQ, Ma JQ et al (2016) Transcriptomic analysis of tea plant responding to drought stress and recovery. PLoS ONE. https://doi.org/10.1371/journal.pone.0147306

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu T, Lu G, Fan D et al (2010) Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 20:1238–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Liu J, Lee RD et al (2010) Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. J Integr Plant Biol 52:1059–1074

    CAS  PubMed  Google Scholar 

  • Mao X, Zhang H, Tian S et al (2010) TaSnRK2.4, an SNF1-type serine/threonine protein kinase of wheat (Triticum aestivum L.), confers enhanced multistress tolerance in Arabidopsis. J Exp Bot 61:683–696

    CAS  PubMed  Google Scholar 

  • Marino R, Ponnaiah M, Krajewski P et al (2009) Addressing drought tolerance in maize by transcriptional profiling and mapping. Mol Genet Genomics 281:163–179

    CAS  PubMed  Google Scholar 

  • Mastrangelo AM, Mazzucotelli E, Guerra D et al (2012) Improvement of drought resistance in crops: from conventional breeding to genomic selection. In: Venkateswarlu B, Shanker AK, Shanker C, Maheswari M (eds) Crop Stress and its management: perspective and strategies. Springer, Dordrecht, pp 225–259

    Google Scholar 

  • McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–1181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mei C, Park SH, Sabzikar R et al (2009) Green tissue-specific production of a microbial endo-cellulase in maize (Zea mays L.) endoplasmic-reticulum and mitochondria converts cellulose into fermentable sugars. J Chem Technol Biotechnol 84:689–695

    CAS  Google Scholar 

  • Miao Y, Lv D, Wang P et al (2006) An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. Plant Cell 18:2749–2766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR et al (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ober ES, Setter TL, Madison JT et al (1991) Influence of water deficit on maize endosperm development: enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division. Plant Physiol 97:154–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okuma E, Nozawa R, Murata Y, Miura K (2014) Accumulation of endogenous salicylic acid confers drought tolerance to Arabidopsis. Plant Signal Behav 9:e280851–e280854. https://doi.org/10.4161/psb.28085

    Article  CAS  Google Scholar 

  • Opitz N, Marcon C, Paschold A et al (2016) Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit. J Exp Bot 67:1095–1107

    CAS  PubMed  Google Scholar 

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a001537

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    CAS  PubMed  Google Scholar 

  • Poormohammad Kiani S, Maury P, Sarrafi A, Grieu P (2008) QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175:565–573

    CAS  Google Scholar 

  • Poroyko V, Spollen WG, Hejlek LG et al (2007) Comparing regional transcript profiles from maize primary roots under well-watered and low water potential conditions. J Exp Bot 58(2):279–289

    PubMed  Google Scholar 

  • Ramachandra Reddy A, Chaitanya KV, Jutur PP, Sumithra K (2004) Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environ Exp Bot 52:33–42

    Google Scholar 

  • Rampino P, Pataleo S, Gerardi C et al (2006) Drought stress response in wheat: physiological and molecular analysis of resistant and sensitive genotypes. Plant Cell Environ 29:2143–2152

    CAS  PubMed  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    CAS  PubMed  Google Scholar 

  • Ruan YL, Jin Y, Yang YJ et al (2010) Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat. Mol Plant 3:942–955

    CAS  PubMed  Google Scholar 

  • Rucker KS, Kvien CK, Holbrook CC, Hook JE (1995) Identification of peanut genotypes with improved drought avoidance traits. Peanut Sci 24:14–18

    Google Scholar 

  • Sacks MM, Silk WK, Burman P (1997) Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. Plant Physiol 114:519–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto M, Munemura I, Tomita R, Kobayashi K (2008) Involvement of hydrogen peroxide in leaf abscission signaling, revealed by analysis with an in vitro abscission system in Capsicum plants. Plant J 56:13–27

    CAS  PubMed  Google Scholar 

  • Sakuma Y, Maruyama K, Qin F et al (2006) Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc Natl Acad Sci USA 103:18822–18827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sangoi L, Salvador R (1997) Dry matter production and partitioning of maize hybrids and dwarf lines at four plant populations. Cienc Rural 27:1–6

    Google Scholar 

  • Schafleitner R, Gutierrez Rosales RO, Gaudin A et al (2007) Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiol Biochem 45:673–690

    CAS  PubMed  Google Scholar 

  • Sekhon RS, Briskine R, Hirsch CN et al (2013) Maize gene atlas developed by rna sequencing and comparative evaluation of transcriptomes based on rna sequencing and microarrays. PLoS ONE. https://doi.org/10.1371/journal.pone.0061005

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo JS, Joo J, Kim MJ et al (2011) OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J 65:907–921

    CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: Can it really help increase crop yield under drought conditions? Plant Cell Environ 25:333–341

    PubMed  Google Scholar 

  • Shao HB, Chu LY, Shao MA et al (2008) Higher plant antioxidants and redox signaling under environmental stresses. C R Biol 331:433–441

    CAS  PubMed  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 2012:1–26

    Google Scholar 

  • Sheehan MJ, Farmer PR, Brutnell TP (2004) Structure and expression of maize phytochrome family homeologs. Genetics 167:1395–1405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7:161–167

    CAS  PubMed  Google Scholar 

  • Singh D, Singh CK, Taunk J et al (2017) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genom 18:206

    Google Scholar 

  • Song K, Kim HC, Shin S et al (2017) Transcriptome analysis of flowering time genes under drought stress in maize leaves. Front Plant Sci 8:1–12

    Google Scholar 

  • Thirunavukkarasu N, Hossain F, Arora K et al (2014) Functional mechanisms of drought tolerance in subtropical maize (Zea mays L.) identified using genome-wide association mapping. BMC Genom 15(1182):1–12

    Google Scholar 

  • Thompson AJ, Mulholland BJ, Jackson AC et al (2007) Regulation and manipulation of ABA biosynthesis in roots. Plant Cell Environ 30:67–78

    CAS  PubMed  Google Scholar 

  • Udvardi MK, Kakar K, Wandrey M et al (2007) Legume transcription factors: global regulators of plant development and response to the environment. Plant Physiol 144:538–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uhart SA, Andrade FH (1995) Nitrogen deficiency in maize: I. Effects on crop growth, development, dry matter partitioning, and kernel set. Crop Sci 35:1376–1383

    Google Scholar 

  • Virlouvet L, Jacquemot M-P, Gerentes D et al (2011) The ZmASR1 protein influences branched-chain amino acid biosynthesis and maintains kernel yield in maize under water-limited conditions. Plant Physiol 157:917–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wanek W, Richter A (1997) Biosynthesis and accumulation of D-ononitol in Vigna umbellata in response to drought stress. Physiol Plant 101:416–424

    CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51:1543–1553

    CAS  PubMed  Google Scholar 

  • Xu Y, Skinner DJ, Wu H et al (2009) Advances in maize genomics and their value for enhancing genetic gains from breeding. Int J Plant Genomics. https://doi.org/10.1155/2009/957602

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu J, Yuan Y, Xu Y et al (2014) Identification of candidate genes for drought tolerance by whole-genome resequencing in maize. BMC Plant Biol 14:83

    PubMed  PubMed Central  Google Scholar 

  • Yin DW, Jun M, Zheng GP et al (2012) Effects of biochar on acid black soil nutrient, soybean root and yield. Nat Resour Sustain Dev Ii 1–4(524–527):2278–2289

    CAS  Google Scholar 

  • Ying S, Zhang D-F, Fu J et al (2012) Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235:253–266

    CAS  PubMed  Google Scholar 

  • Zhang G, Guo G, Hu X et al (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20:646–654

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Pan J, Kong X et al (2012) ZmMKK3, a novel maize group B mitogen-activated protein kinase kinase gene, mediates osmotic stress and ABA signal responses. J Plant Physiol 169:1501–1510

    CAS  PubMed  Google Scholar 

  • Zheng J, Zhao J, Tao Y et al (2004) Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol Biol 55:807–823

    CAS  PubMed  Google Scholar 

  • Zheng J, Fu J, Gou M et al (2010) Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol 72:407–421

    CAS  PubMed  Google Scholar 

  • Zhu J-K (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang Y, Ren G, Yue G et al (2007) Effects of water-deficit stress on the transcriptomes of developing immature ear and tassel in maize. Plant Cell Rep 26:2137–2147

    CAS  PubMed  Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24:57–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nepolean Thirunavukkarasu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Mittal, S., Thirunavukkarasu, N. (2019). Effect of Drought Stress and Utility of Transcriptomics in Identification of Drought Tolerance Mechanisms in Maize. In: Rajpal, V., Sehgal, D., Kumar, A., Raina, S. (eds) Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I. Sustainable Development and Biodiversity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-91956-0_4

Download citation

Publish with us

Policies and ethics