Skip to main content

Epigenetic Response of Plants to Abiotic Stress: Nature, Consequences and Applications in Breeding

  • Chapter
  • First Online:
Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 20))

Abstract

Stress is inevitable in the life cycle of living organisms, including plants. Being sessile, plants are more prone to the deleterious effects of environmental stress . Therefore, plants have developed complex mechanisms to survive under these challenging conditions. Tolerance , avoidance, and resistance are the three major strategies followed by plants to counter the recurring biotic and abiotic stresses . These mechanisms involve genes associated with several interconnected pathways, which lead them towards better stress tolerance . Plants resort to various modifications in their morphological traits, physiology, and so forth in response to stress. Modulations in various regulatory mechanisms, including epigenetic modifications, play a pivotal role in developing stress tolerance in plants. These involve changes in either the plant homeostasis or heritable changes in gene expression pattern. The trans-generational changes are brought about, more often, by dynamic changes in epigenetic marks rather than development of stress resistant alleles via gene mutation. A large number of stress resistant transgenics have been developed over the years all over the world. However, the traditional breeding has remained indispensable. Much emphasis has been laid on identification and characterization of stress resistance genes and developing transgenic crop varieties, while the epigenomic aspects have been given less importance. The present chapter focuses on the essential components of epigenetic machinery, different epigenetic alterations involved in conversion of active euchromatin to silent heterochromatin and vice versa during stress, and integration of epigenetic data with breeding programs to devise better strategies towards development of stress resistant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali GS, Reddy ASN (2008) Regulation of alternative splicing of pre-mRNAs by stresses. Nuclear pre-mRNA. Process plants. Springer, Berlin Heidelberg, pp 257–275

    Google Scholar 

  • Ball MP, Li J, Gao Y, Lee J, Leproust E, Park IH, Xie B, Daley GQ, Church G (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat Biotechnol 27:361–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bezhani S, Winter C, Hershman S, Wagner JD, Kennedy JF, Kwon CS, Pfluger J, Su Y, Wagner D (2007) Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED. Plant Cell 19:403–416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj AR, Joshi G, Kukreja B, Malik V, Arora P, Pandey R, Shukla RN et al (2015) Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biol 15:1–15

    Google Scholar 

  • Bock C (2012) Analysing and interpreting DNA methylation data. Nat Rev Genetics 13:705–719

    CAS  PubMed  Google Scholar 

  • Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourchis D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330:617–622

    CAS  Google Scholar 

  • Brzeski J, Jerzmanowski A (2003) Deficient in DNA methylation 1 (DDM1) defines a novel family of chromatin-remodeling factors. J Biol Chem 278:823–828

    CAS  PubMed  Google Scholar 

  • Chen M, Lv S, Meng Y (2010) Epigenetic performers in plants. Dev Growth Differ 52:555–566

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y, Hetzel JA et al (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466:388–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    CAS  PubMed  Google Scholar 

  • Diekman J, Petracek M, Heard JE (2012) Drought tolerance through biotechnology: improving translation from the laboratory to farmers’ fields. Curr Opin Biotechnol 23:243–250

    Google Scholar 

  • Dhar MK, Vishal P, Sharma R, Kaul S (2014) Epigenetic dynamics: role of epimarks and underlying machinery in plants exposed to abiotic stress. Int J Genomics 2014:187146. https://doi.org/10.1155/2014/187146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar PK, Thwin CS, Tun K, Tsumoto Y, Maurer-Stroh S, Eisenhaber F, Surana U (2009) Synthesizing non-natural parts from natural genomic template. J Biol Eng 3(3):2. https://doi.org/10.1186/1754-1611-3-2

    PubMed  PubMed Central  Google Scholar 

  • Dhawan R, Luo H, Foerster AM, Abu Qamar S, Du HN, Briggs SD, Scheid OM, Mengiste T (2009) HISTONE MONOUBIQUITINATION1 interacts with a subunit of the mediator complex and regulates defense against necrotrophic fungal pathogens in Arabidopsis. Plant Cell 21:1000–1019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR, Dixon JE, Ecker JR (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci USA 109:E2183–E2191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Cushman JC, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochem (Mosc) 71:461–465

    CAS  Google Scholar 

  • Eichten SR, Briskine R, Song J, Li Q, Swanson-Wagner R, Hermanson PJ, Waters AJ et al (2013) Epigenetic and genetic influences on DNA methylation variation in maize populations. Plant Cell 25:2783–2797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci 107:8689–8694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujimoto R, Sasaki T, Inoue H, Nishio T (2008) Hypomethylation and transcriptional reactivation of retrotransposon-like sequences in ddm1 transgenic plants of Brassica rapa. Plant Mol Biol 66:463–473

    CAS  PubMed  Google Scholar 

  • Gendrel A, Lippman Z, Yordan C, Colot V, Martienssen RA (2002) Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science 297:1871–1873

    CAS  PubMed  Google Scholar 

  • Gutzat R, Scheid OM (2012) Epigenetic responses to stress: triple defense? Curr Opin Plant Biol 15:568–573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houben A, Demidov D, Caperta AD, Karimi R, Agueci F, Vlasenko L (2007) Phosphorylation of histone H3 in plants–a dynamic affair. Biochim Biophys Acta 1769(5–6):308–315

    CAS  PubMed  Google Scholar 

  • Jeggo PA, Holliday R (1986) Azacytidine-induced reactivation of a DNA repair gene in Chinese hamster ovary cells. Mol Cell Biol 6:2944–2949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ji L, Neumann DA, Schmitz RJ (2015) Crop epigenomics: identifying, unlocking and harnessing cryptic variation in crop genomes. Mol Plant 8(6):860–870

    CAS  PubMed  Google Scholar 

  • Ji L, Sasaki T, Sun X, Ma P, Lewis ZA, Schmitz RJ (2014) Methylated DNA is over-represented in whole-genome bisulfite sequencing data. Front Genet 5:341

    PubMed  PubMed Central  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J et al (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

    PubMed  PubMed Central  Google Scholar 

  • Johnson TB, Coghill RD (1925) Researches on pyrimidines. C111. The discovery of 5-methyl-cytosine in tuberculinic acid, the nucleic acid of the tubercle Bacillus1. J American Chem Soc 47:2838–2844

    CAS  Google Scholar 

  • Khorasanizadeh S (2004) The nucleosome: from genomic organization to genomic regulation. Cell 116:259–272

    CAS  PubMed  Google Scholar 

  • Keqiang Wu, Zhang L, Zhou C, Chun-Wei Y, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exp Bot 59(2):225–234

    Google Scholar 

  • Kim K-C, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Sung S (2012) Environmentaly coordinated epigenetic silencing of FLC by protein and long noncoding RNA components. Curr Opin Plant Biol 15:51–56

    CAS  PubMed  Google Scholar 

  • Kim JM, To TK, Ishida J, Matsui A, Kimura H, Seki M (2012) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53:847–856

    CAS  PubMed  Google Scholar 

  • Kosuke N, Kawagishi Y, Kawabe A, Sato M, Masuta Y, Kato A, Ito H (2017) Epigenetic regulation of a heat-activated retrotransposon in cruciferous vegetables. Epigenomes 1(1):7

    Google Scholar 

  • Laird PW (2010) Principles and challenges of genome wide DNA methylation analysis. Nat Rev Genet 11:191–203

    CAS  PubMed  Google Scholar 

  • Lane AK, Niederhuth CE, Ji L, Schmitz RJ (2014) pENCODE: a plant encyclopedia of DNA elements. Annu Rev Genet 48:49–70

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lauria M, Rossi V (2011) Epigenetic control of gene regulation in plants. Biochimica et Biophysica Acta (BBA) 1809:369–378

    CAS  Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye CY, Tang S et al (2014) Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet 15:S9

    PubMed  PubMed Central  Google Scholar 

  • Lister R, O’Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long Y, Xia W, Li R, Wang J, Shao M, Feng J, King GJ et al (2011) Epigenetic QTL mapping in Brassica napus. Genetics 189:1093–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    CAS  PubMed  Google Scholar 

  • Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    CAS  PubMed  Google Scholar 

  • McGhee JD, Felsenfeld G (1980) Nucleosome structure. Ann Rev Biochem 49:1115–1156

    CAS  PubMed  Google Scholar 

  • Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, Giannoukos G, Alvarez P et al (2007) Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misook H, Danny W-KN, Wen-Hsiung L, Chen ZJ (2011) Coordinated histone modifications are associated with gene expression variation within and between species. Genome Res 21(4):590–598

    Google Scholar 

  • Mlynarova L, Nap JP, Bisseling T (2007) The SWI/SNF chromatin remodelling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51:874–885

    CAS  PubMed  Google Scholar 

  • Narlikar GJ, Sundaramoorthy R, Owen-Hughes T (2013) Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niederhuth CE, Schmitz RJ (2014) Covering your bases: inheritance of DNA methylation in plant genomes. Mol Plant 7:472–480

    CAS  PubMed  Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86

    Google Scholar 

  • Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD et al (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77

    PubMed  PubMed Central  Google Scholar 

  • Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Scheid OM (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rando OJ (2012) Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 22:148–155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyna-Lopez GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    CAS  PubMed  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation-revisiting soft inheritance. Nat Rev Genet 7:395–401

    CAS  PubMed  Google Scholar 

  • Robinson MD, Kahraman A, Law CW, Lindsay H, Nowicka M, Weber LM, Zhou X (2014) Statistical methods for detecting differentially methylated loci and regions. Front Genet 5:324

    PubMed  PubMed Central  Google Scholar 

  • Roudier F, Ahmed I, Sarazin A, Mary-Huard T, Cortijo S, Bouyer D et al (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBOJ 30(10):1928–1938

    CAS  Google Scholar 

  • Saze H (2008) Epigenetic memory transmission through mitosis and meiosis in plants. Semin Cell Dev Biol 19:527–536

    PubMed  Google Scholar 

  • Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53:766–784

    CAS  PubMed  Google Scholar 

  • Schmitz RJ, He Y, Valdes-Lopez O, Khan SM, Joshi T, Urich MA, Nery JR et al (2013) Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res 23:1663–1674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O, Schork NJ et al (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitz RJ, Zhang X (2011) High-throughput approaches for plant epigenomic studies. Curr Opin Plant Biol 14:130–136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Vishal P, Kaul S, Dhar MK (2017) Epiallelic changes in known stress-responsive genes under extreme drought conditions in Brassica juncea (L.) Czern. Plant Cell Rep 36(1):203–217

    CAS  PubMed  Google Scholar 

  • Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B (2012) Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol 158:835–843

    CAS  PubMed  Google Scholar 

  • Slotkin RK, Vaughn M, Borges F, Tanurdžić M, Becker JD, Feijó JA, Martienssen RA (2009) Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136:461–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska- Bosak M (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227:245–254

    CAS  PubMed  Google Scholar 

  • Springer NM (2013) Epigenetics and crop improvement. Trends Genet 29:241–247

    CAS  PubMed  Google Scholar 

  • Stelpflug SC, Eichten SR, Hermanson PJ, Springer NM, Kaeppler SM (2014) Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize. Genetics 198:209–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    CAS  PubMed  Google Scholar 

  • Stroud H, Do T, Du J, Zhong X, Feng S, Johnson L, Patel DJ et al (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72

    CAS  PubMed  Google Scholar 

  • Suji KK, Joel AJ (2010) An epigenetic change in rice cultivars under water stress conditions. Elect J Plant Breed 1:1142–1143

    Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    CAS  PubMed  Google Scholar 

  • Terooatea TW, Pozner A, Buck-Koehntop BA (2016) PAtCh-Cap:input strategy for improving analysis of ChIP-exo data sets and beyond. Nucleic Acids Res 44(21):e159

    PubMed  PubMed Central  Google Scholar 

  • Tran RK, Zilberman D, de Bustos C, Ditt RF, Henikoff JG, Lindroth AM, Delrow J, Boyle T, Kwong S, Bryson TD, Jacobsen SE, Henikoff S (2005) Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol 6:R90

    PubMed  PubMed Central  Google Scholar 

  • Tsaftaris AS, Dickinson AN (2000) DNA methylation and plant breeding. Plant Breed Rev 18:87–176

    CAS  Google Scholar 

  • Varshney RK, Bansal KC, Aggarwal PK, Datta SK, Craufurd PQ (2011) Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends Plant Sci 16:363–371

    CAS  PubMed  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SIS, Martienssen A (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    CAS  PubMed  Google Scholar 

  • Waddington CH (1953) Epigenetics and evolution. Symp Soc Exp Biol 7:186–199

    Google Scholar 

  • Walley JW, Rowe HC, Xiao Y, Chehab EW, Kliebenstein DJ, Wagner D, Dehesh K (2008) The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathog 4:e1000237–e1000237

    PubMed  PubMed Central  Google Scholar 

  • Wang W, Zhao X, Pan Y, Zhu L, Fu B, Li Z (2011) DNA methylation changes detected by methylation sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Genet Genomics 38:419–424

    CAS  PubMed  Google Scholar 

  • Wang X, Elling AA, Li X, Li N, Peng Z, He G, Sun H et al (2009) Genome-wide and organ-specific landscapes of epigenetic modifiations and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21:1053–1069

    CAS  PubMed  PubMed Central  Google Scholar 

  • West PT, Li Q, Ji L, Eichten SR, Song J, Vaughn MW, Schmitz RJ et al (2014) Genomic distribution of H3K9me2 and DNA methylation in a maize genome. PLoS ONE 9:e105267

    PubMed  PubMed Central  Google Scholar 

  • Wu K, Zhang L, Zhou C, Yu CW, Chaikam V (2008) HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis. J Exper Bot 59:225–234

    CAS  Google Scholar 

  • Yang C, Zhang M, Niu W, Yang R, Zhang Y, Qiu Z, Sun B et al (2011) Analysis of DNA methylation in various swine tissues. PLoS ONE 6:e16229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20:259–266

    CAS  PubMed  Google Scholar 

  • Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE (2007a) Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoSBiol 5:e129

    Google Scholar 

  • Zhang X, Henderson IR, Lu C, Green PJ, Jacobsen SE (2007b) Role of RNA polymerase IV in plant small RNA metabolism. Proc Natl Acad Sci 104:4536–4541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson IR et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    CAS  PubMed  Google Scholar 

  • Zhao L, Wang P, Hou H, Zhang H, Wang Y, Yan S, Huang Y et al (2014a) Transcriptional regulation of cell cycle genes in response to abiotic stresses correlates with dynamic changes in histone modifications in maize. PLoS ONE 9:e106070

    PubMed  PubMed Central  Google Scholar 

  • Zhao L, Wang P, Yan S, Gao F, Li H, Hou H, Zhang Q et al (2014b) Promoter-associated histone acetylation is involved in the osmotic stress-induced transcriptional regulation of the maize ZmDREB2A gene. Physiol Plant 151:459–467

    CAS  PubMed  Google Scholar 

  • Zheng X, Pontes O, Zhu J, Miki D, Zhang F, Li WX, Lida K et al (2008) T ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455:1259–1262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2009) Active DNA demethylation mediated by DNA glycosylases. Ann Rev Genet 43:143

    CAS  PubMed  Google Scholar 

  • Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to DBT, Govt. of India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Dhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhar, M.K., Sharma, R., Vishal, P., Kaul, S. (2019). Epigenetic Response of Plants to Abiotic Stress: Nature, Consequences and Applications in Breeding. In: Rajpal, V., Sehgal, D., Kumar, A., Raina, S. (eds) Genetic Enhancement of Crops for Tolerance to Abiotic Stress: Mechanisms and Approaches, Vol. I. Sustainable Development and Biodiversity, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-91956-0_3

Download citation

Publish with us

Policies and ethics