Skip to main content

Silviculture of Mixed Forests: A European Overview of Current Practices and Challenges

  • Chapter
  • First Online:
Dynamics, Silviculture and Management of Mixed Forests

Abstract

Currently, about 70% of the forest land in Europe is covered by stands composed of two or more tree species. The similar situation can be found outside Europe too. While forest management of monocultures is well described, multispecies forests still need a better understanding to develop appropriate forest practice. Managing mixed forests can be more complex than managing monocultures because of the need to optimize the provision of multiple benefits according to the societal demands including sustaining biodiversity and ecosystem functioning. In this chapter we are going to present (1) the most important and well-described tree species combinations found in each participating countries taking biogeographical region in Europe into account, (2) the main management objectives of those mixtures, (3) the silvicultural approaches that are available for the particular mixed-species forests and (4) the main challenges experienced in mixed-species forest management. We synthesized information about management of mixed-species forests based on questionnaires received from both European countries and few countries from outside Europe participating in COST Action ‘EuMIXFOR’. The survey revealed that (i) the main management objective in the analysed mixtures is valuable timber production followed by protection of soil and water and protection of forests against disturbances, (ii) the uniform shelterwood is the most widespread regeneration method followed by the clear-cutting and the irregular shelterwood system, (iii) the crown thinning followed by low thinning is the most frequent thinning method, and (iv) the main challenge of management is high game pressure and the lack of management rules covering mixture growth and taking into account both species functional traits and site conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aa :

Abies alba Mill.

Aad :

Arbutus andrachne L.

Ac :

Abies cilicica Ant. and Kotschy Carriére

Ach :

Austrocedrus chilensis (D.Don) Pic.Serm. and Bizzarri

Ad :

Arceuthos drupacea Labill.

Ag :

Alnus glutinosa Gaertn.

An :

Abies nordmanniana (Steven) Spach

Ap :

Acer platanoides L.

Aps :

Acer pseudoplatanus L.

Aspp:

Acer spp.

Au :

Arbutus unedo L.

Bpe :

Betula pendula Roth

Bpu :

Betula pubescens Ehrh.

Bspp:

Betula spp.

Ca :

Cedrus atlantica (Endl.) Manetti ex Carrière

Caspp:

Carpinus spp.

Cb :

Carpinus betulus L.

Cl :

Cedrus libani A. Rich.

Co :

Carpinus orientalis Mill.

Crspp:

Crataegus spp.

Cs :

Castanea sativa Mill.

Cse :

Cupressus sempervirens L.

Espp:

Eucalyptus spp.

Fa :

Fraxinus angustifolia Vahl

Fe :

Fraxinus excelsior L.

Fon :

Fraxinus ornus L.

Fot :

Fagus orientalis Lipsky

Fs :

Fagus sylvatica L.

Jspp:

Juniperus spp.

Ld :

Larix decidua Mill.

Lspp:

Larix spp.

Nan :

Nothofagus alpina (Poepp. and Endl.) Oerst.

Nd :

Nothofagus dombeyi (Mirb.) Oerst.

No :

Nothofagus obliqua (Mirb.) Oerst.

Oc :

Ostrya carpinifolia Scop.

Pa :

Picea abies [L.] Karst

Pb :

Pinus brutia Ten.

Pce :

Pinus cembra L.

Pco :

Pinus contorta Dougl. ex Loud.

Ph :

Pinus halepensis Mill.

Pm :

Pseudotsuga menziesii (Mirb.) Franco

Pmspp:

Pinus mugo spp. Turra

Pn :

Pinus nigra Arn.

Po :

Picea orientalis (L.) Peterm.

Pp :

Pinus pinea L.

Ppr :

Pinus pinaster Aiton

Prspp:

Prunus spp.

Psi :

Picea sitchensis (Bong.) Carrière

Pspp:

Pinus spp.

Psy :

Pinus sylvestris L.

Qce :

Quercus cerris L.

Qco :

Quercus coccifera L.

Qfa :

Quercus faginea subsp. baetica (Webb) Maire

Qfr :

Quercus frainetto Ten.

Qi :

Quercus ilex L.

Qp :

Quercus petraea (Matt.) Liebl.

Qpu :

Quercus pubescens Willd.

Qpy :

Quercus pyrenaica Willd.

Qr :

Quercus robur L.

Qrt :

Quercus rotundifolia Lam.

Qs :

Quercus suber L.

Qspp:

Quercus spp.

Tc :

Tilia cordata Mill.

Tspp:

Tetraclinis spp.

Tspp:

Tilia spp.

Um :

Ulmus minor Mill.

CC:

Clear-cutting system

CO:

Coppice system

CS:

Coppice-with-standard system

GS:

Group selection system

IH:

Individual tree harvesting

IS:

Irregular shelterwood system

PCF:

Patch clear felling

SE:

Selection system

SH:

Shelterwood system

SS:

Single tree selection system

AP:

Artificial regeneration by planting

AS:

Artificial regeneration by direct seeding

NR:

Natural regeneration from seeds

VR:

Vegetative regeneration

B:

Brushing

C:

Cleaning

L:

Liberation

W:

Weeding

CRT:

Final crop thinning

CT:

Crown thinning (thinning from above)

FT:

Free style of thinning

IT:

Intermediate thinning (mixture of crown and low thinning)

LT:

Low thinning (thinning from below)

SVT:

Selective thinning (the most competitive trees in relation to crop tree are cut regardless their position in the stand)

FE:

Fertilization

PF:

Prescribed fire

PR:

Artificial pruning

SLC:

Salvage cutting

SNC:

Sanitation cutting

L:

Limited

N:

No treatment

NA:

Not applicable

ND:

Not documented (lack of information)

Y:

Yes

References

  • Ammer C (2017) Unraveling the importance of inter- and intraspecific competition for the adaptation of forests to climate change. In: Canovas FM, Lüttge U, Matyssek R (eds) Progress in botany, vol 78. Springer, Cham, pp 345–367

    Google Scholar 

  • Bagnaresi U, Giannini R, Grassi G, Minotta G, Paffetti D, Pini Prato E, Proietti Placidi AM (2002) Stand structure and biodiversity in mixed, uneven-aged coniferous forests in the eastern Alps. Forestry 75(4):357–364

    Article  Google Scholar 

  • Balvanera P, Pfister AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156

    Article  PubMed  Google Scholar 

  • Baruch Y, Holtom BC (2008) Survey response rate levels and trends in organizational research. Hum Relat 61:1139–1160

    Article  Google Scholar 

  • Battles JJ, Shlisky AJ, Barrett RH, Heald RC, Allen-Diaz BH (2001) The effects of forest management on plant species diversity in a Sierran conifer forest. For Ecol Manag 146:211–222

    Article  Google Scholar 

  • Bauhus J, Puettmann KJ, Kühne C (2013) Close-to-nature forest management in Europe: does it support complexity and adaptability of forest ecosystems. In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, New York, pp 187–213

    Google Scholar 

  • Bauhus J, Forrester DI, Pretzsch H, Felton A, Pyttel P, Benneter A (2017) Silvicultural option for mixed-species stands. In: Pretzsch H, Forrester DI, Bauhus J (eds) Mixed-species forests. Springer, Berlin

    Google Scholar 

  • Beguin J, Tremblay J, Thiffault N, Pothier D, Côté SD (2016) Management of forest regeneration in boreal and temperate deer-forest systems: challenges, guidelines, and research gaps. Ecosphere 7(10):1–16

    Article  Google Scholar 

  • Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. For Ecol Manag 132:39–50

    Article  Google Scholar 

  • Bernard M, Boulanger V, Dupouey JL, Laurent L, Montpied P, Morin X, Picard JF, Saïd S (2017) Deer browsing promotes Norway spruce at the expense of silver fir in the forest regeneration phase. For Ecol Manag 400:269–277

    Article  Google Scholar 

  • Biber P, Borges JG, Moshammer R, Barreiro S, Botequim B, Brodrechtová Y, Brukas V, Chirici G, Cordero-Debets R, Corrigan E, Eriksson LO, Favero M, Galev E, Garcia-Gonzalo J, Hengeveld G, Kavaliauskas M, Marchetti M, Marques S, Mozgeris G, Navrátil R, Nieuwenhuis M, Orazio C, Paligorov I, Pettenella D, Sedmák R, Smreček R, Stanislovaitis A, Tomé M, Trubins R, Tuček J, Vizzarri M, Wallin I, Pretzsch H, Sallnäs O (2015) How sensitive are ecosystem services in European forest landscapes to silvicultural treatment? Forests 6:1666–1695

    Article  Google Scholar 

  • Bolte A, Ammer C, Löf M, Madsen P, Nabuurs GJ, Schall P, Spathelf P, Rock J (2009) Adaptive forest management in central Europe: climate change impacts, strategies and integrative concept. Scand J For Res 24(6):473–482

    Article  Google Scholar 

  • Brang P (2005) Virgin forests as a knowledge source for central European silviculture: reality or myth? For Snow Landsc Res 79(1/2):19–32

    Google Scholar 

  • Brang P, Spathelf P, Larsen JB, Bauhus J, Bončìna A, Chauvin C, Drössler L, Carlos García-Güemes C, Caroline Heiri C, Kerr G, Lexer MJ, Mason B, Mohren F, Mühlethaler U, Nocentini S, Svoboda M (2014) Suitability of close-to-nature silviculture for adapting temperate European forests to climate change. Forestry 87:492–503

    Article  Google Scholar 

  • Bravo-Oviedo A, Pretzsch H, Ammer C, Andenmatten E, Antón C, Barbati A, Barreiro S, Brang P, Bravo F, Brunner A, Coll L, Corona P, den Ouden J, Drössler L, Ducey MJ, Kaynas BY, Legay M, Löf M, Lesiński J, Mason B, Meliadis M, Manetti MC, Morneau F, Motiejunaite J, O’Reilly C, Pach M, Ponette Q, Río M, Short I, Skovsgaard JP, Souidi Z, Spathelf P, Sterba H, Stojanovic D, Strelcova K, Svoboda M, Valsta L, Verheyen K, Zlatanov T (2014) European mixed forests: definition and perspectives. For Syst 3:518–533

    Google Scholar 

  • Carnol M, Baeten L, Branquart E, Grégoire J-C, Heughebaert A, Muys B, Ponette Q, Verheyen K (2014) Ecosystem services of mixed species forest stands and monocultures: comparing practitioners’ and scientists’ perceptions with formal scientific knowledge. Forestry 87:639–653

    Article  Google Scholar 

  • Chen HYH, Klinka K, Mathey A-H, Wang X, Varga P, Chourmouzis C (2003) Are mixed-species stands more productive than single-species stands: an empirical test of three forest types in British Columbia and Alberta. Can J For Res 33:1227–1237

    Article  Google Scholar 

  • Coll L, Ameztegui A, Collet C, Löf M, Mason B, Pach M, Verheyen K, Abrudan I, Barbati A, Barreiro S, Bielak K, Bravo-Oviedo A, Ferrari B, Govedar Z, Kulhavy J, Lazdina D, Metslaid M, Mohren F, Pereira M, Peric S, Rasztovits E, Short I, Spathelf P, Sterba H, Stojanovic D, Valsta L, Zlatanov T, Ponette Q (2018) Knowledge gaps about mixed forests: what do European forest managers want to know and what answers can science provide? For Ecol Manag 407:106–115

    Article  Google Scholar 

  • Corona P (2014) Forestry research to support the transition towards a bio-based economy. Ann Silvic Res 38:37–38

    Google Scholar 

  • Decocq G, Aubert M, Dupont F, Alard D, Saguez R, Wattez Franger A, De Foucalt B, Delelis-Dusollier A, Bardat J (2004) Plant diversity in a managed temperate deciduous forest: understorey response to two silvicultural systems. J Appl Ecol 41:1065–1079

    Article  Google Scholar 

  • Del Río M, Pretzsch H, Alberdi I, Bielak K, Bravo F, Brunner A, Condés S, Ducey MJ, Fonseca T, von Lüpke N, Pach M, Peric S, Perot T, Souidi Z, Spathelf P, Sterba H, Tijardovic M, Tomé M, Vallet P, Bravo-Oviedo A (2018) Characterization of mixed forests. In: Bravo-Oviedo A, Pretzsch H, del Río M (eds) Dynamics, silviculture and management of mixed forests. Springer, Dordrecht, pp 27–71

    Google Scholar 

  • Dieler J, Uhl E, Biber P, Müller J, Rötzer T, Pretzsch H (2017) Effect of forest stand management on species composition, structural diversity, and productivity in the temperate zone of Europe. Eur J For Res 136:739–766

    Article  Google Scholar 

  • Dirnberger G, Sterba H, Condés S, Ammer C, Annighöfer P, Avdagić A, Bielak K, Brazaitis G, Coll L, Heym M, Hurt H, Kurylyak V, Motta R, Pach M, Ponette Q, Ruiz-Peinado R, Skrzyszewski J, Šrámek V, de Streel G, Svoboda M, Zlatanov T, Pretzsch H (2017) Species proportions by area in mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.). Eur J For Res 136:171–183

    Article  Google Scholar 

  • Dobšinská Z, Rathke J, Weber N (2015) Synthesis report COST ACTION FP 1207, WG1 Forest-related policy targets and measures. IUFRO occasional paper no. 29

    Google Scholar 

  • Edwards D, Jay M, Jensen FS, Lucas B, Marzano M, Montagné C, Peace A, Weiss G (2012) Public preferences across Europe for different forest stand types as sites for recreation. Ecol Soc 17(1):27

    Article  Google Scholar 

  • Farrell EP, Führer E, Ryan D, Andersson F, Hüttl R, Piussi P (2000) European forest ecosystems: building the future on the legacy of the past. For Ecol Manag 132:5–20

    Article  Google Scholar 

  • FOREST EUROPE (2015) State of Europe’s forests 2015

    Google Scholar 

  • Gamborg C, Larsen JB (2003) ‘Back to nature’ – a sustainable future for forestry? For Ecol Manag 179:559–571

    Article  Google Scholar 

  • Gamfeldt L, Snäll T, Bagchi R, Jonsson M, Gustafsson L, Kjellander P, Ruiz-Jaen MC, Fröberg M, Stendahl J, Philipson CD, Mikusiński G, Andersson E, Westerlund B, Andrén H, Moberg F, Moen J, Bengtsson J (2013) Higher levels of multiple ecosystem services are found in forests with more tree species. Nat Commun 4:1340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giergiczny M, Czajkowski M, Żylicz T, Angelstam P (2015) Choice experiment assessment of public preferences for forest structural attributes. Ecol Econ 119:8–23

    Article  Google Scholar 

  • Griess VC, Knoke T (2013) Bioeconomic modelling of mixed Norway spruce – European beech stands. Economic consequences of considering ecological effects. Eur J For Res 132:511–522

    Article  Google Scholar 

  • Griess VC, Acevedo R, Härtl F, Staupendahl K, Knoke T (2012) Does mixing tree species enhance stand resistance against natural hazards? A case study for spruce. For Ecol Manag 267:284–296

    Article  Google Scholar 

  • Gundersen VS, Frivold LH (2008) Public preferences for forest structures: a review of quantitative surveys from Finland, Norway and Sweden. Urban For Urban Green 7:241–258

    Article  Google Scholar 

  • He Y, Qin L, Li Z, Liang X, Shao M, Tan L (2013) Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For Ecol Manag 295:193–198

    Article  Google Scholar 

  • Holmström E, Ekö PM, Hjelm K, Karlsson M, Nilsson U (2016) Natural regeneration on planted clearcuts – the easy way to mixed Forest? Open J For 6:281–294

    Google Scholar 

  • Hooper DU, Chapin SJ, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardl DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hothorn T, Müller J (2010) Large-scale reduction of ungulate browsing by managed sport hunting. For Ecol Manag 260:1416–1423

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (Core Writing Team, Pachauri RK, Meyer LA (eds)), IPCC, Geneva, 151 p

    Google Scholar 

  • Jacobsen MK (2001) History and principles of close to nature forest management: a central European perspective. Naconex 3:56–58

    Google Scholar 

  • Jactel H, Brockerhoff E, Duelli P (2005) A test of the biodiversity-stability theory: meta-analysis of tree species diversity effects on insect pest infestation, and re-examination of responsible factors. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function: temperate and boreal systems, Ecological Studies, vol 176. Springer, Berlin, pp 235–262

    Chapter  Google Scholar 

  • Jactel H, Nicoll BC, Branco M, Gonzalez-Olabarria JR, Grodzki W, Långström B, Moreira F, Netherer S, Orazio C, Piou D, Santos H, Schelhaas MJ, Tojic K, Vodde F (2009) The influences of forest stand management on biotic and abiotic risks of damage. Ann For Sci 66:701

    Article  Google Scholar 

  • Jactel H, Bauhus J, Boberg J, Bonal D, Castagneyrol B, Gardiner B, Gonzalez-Olabarria JR, Koricheva J, Meurisse N, Brockerhoff EG (2017) Tree diversity drives forest stand resistance to natural disturbances. Curr For Rep 3:223–243

    Google Scholar 

  • Klopcic M, Boncina A (2012) Recruitment of tree species in mixed selection and irregular shelterwood forest stands. Ann For Sci 69:915–925

    Article  Google Scholar 

  • Klopcic M, Jerina K, Boncina A (2010) Long-term changes of structure and tree species composition in Dinaric uneven-aged forests: are red deer an important factor? Eur J For Res 129:277–288

    Article  Google Scholar 

  • Knoke T (2017) Economics of mixed forests. In: Pretzsch H, Forrester DI, Bauhus J (eds) Mixed-species forests. Springer, Berlin

    Google Scholar 

  • Knoke T, Ammer C, Stimm B, Monsandl R (2008) Admixing broadleaved to coniferous tree species: a review on yield, ecological stability and economics. Eur J For Res 127:89–101

    Article  Google Scholar 

  • Leuschner C, Jungkunst HF, Fleck S (2009) Functional role of forest diversity: pros and cons of synthetic stands and across-site comparisons in established forests. Basic Appl Ecol 10:1–9

    Article  Google Scholar 

  • Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manag 259:698–709

    Article  Google Scholar 

  • Loguercio GA, Donoso PJ, Müller-Using S, Dezzotti A, Urretavizcaya MF, Navarro CO, Martin M, Schlegel B, Müller-Using B, Mujica R, González-Peñalba M, Attis Beltrán H, Caselli M (2018) Silviculture of temperate mixed forests from South America. In: Bravo-Oviedo A, Pretzsch H, del Río M (eds) Dynamics, silviculture and management of mixed forests. Springer, Cham, pp 271–317

    Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808

    Article  CAS  PubMed  Google Scholar 

  • Matthews JD (1991) Silvicultural systems. Oxford University Press, Oxford

    Google Scholar 

  • Metz J, Annighöfer P, Schall P, Zimmermann J, Kahl T, Schulze ED, Ammer C (2016) Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Glob Chang Biol 22:903–920

    Article  PubMed  Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005a) Ecosystems and human wellbeing: biodiversity synthesis. World Resource Institute, Washington, DC

    Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005b) Ecosystems and human wellbeing: synthesis. Island Press, Washington, DC

    Google Scholar 

  • Mlinšek D (2006) Close to nature forestry as the only true culture of a man’s activity. In: Diaci J (ed) Nature-based forestry in central Europe. Alternatives to industrial forestry and strict preservation, vol 126. Studia Forestalia Slovenica, Ljubljana, pp 91–103

    Google Scholar 

  • Nocentini S, Buttoud G, Ciancio O, Corona P (2017) Managing forests in a changing world: the need for a systemic approach. A review. For Syst 26(1):eR01

    Google Scholar 

  • O’Hara K (2001) The silviculture of transformation – a commentary. For Ecol Manag 151:81–86

    Article  Google Scholar 

  • O’Hara K (2016) What is close-to-nature silviculture in a changing world? Forestry 89(1):1–6

    Article  Google Scholar 

  • Olsthoorn AFM, Bartelink HH, Gardiner JJ, Pretzsch H, Hekhuis HJ, Franc A (1999) Management of mixed-species forest: silviculture and economics. IBN Sci Contrib 15:1–389

    Google Scholar 

  • Paluch J (2006) Tree value increment as a cutting control criterion in complex cutting systems. Sylwan 150(12):54–63 (in Polish)

    Google Scholar 

  • Park A, Puettmann K, Wilson E, Messier C, Kames S, Dharf A (2014) Can boreal and temperate forest management be adapted to the uncertainties of 21st century climate change? Crit Rev Plant Sci 33(4):251–285

    Article  Google Scholar 

  • Pretzsch H (2017) Individual tree structure and growth in mixed compared with monospecific stands. In: Pretzsch H, Forrester DI, Bauhus J (eds) Mixed-species forests. Springer, Berlin, pp 271–336

    Chapter  Google Scholar 

  • Pretzsch H, Forrester DI (2017) Stand dynamics of mixed-species stands compared with monocultures. In: Pretzsch H, Forrester DI, Bauhus J (eds) Mixed-species forests. Springer, Berlin

    Chapter  Google Scholar 

  • Pretzsch H, Schütze G (2009) Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: evidence on stand level and explanation on individual tree level. Eur J For Res 128:183–204

    Article  Google Scholar 

  • Pretzsch H, Zenner EK (2017) Toward managing mixed-species stands: from parametrization to prescription. For Ecosyst 4:19

    Article  Google Scholar 

  • Pretzsch H, Biber P, Uhl E, Dauber E (2015a) Long-term stand dynamics of managed spruce-fir-beech mountain forests in Central Europe: structure, productivity and regeneration success. Forestry 88(4):407–428

    Article  Google Scholar 

  • Pretzsch H, del Río M, Ammer C, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Dirnberger G, Drössler L, Fabrika M, Forrester DI, Godvod K, Heym M, Hurt V, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Schütze G, Schweig J, Skrzyszewski J, Sramek V, Sterba H, Stojanović D, Svoboda M, Vanhellemont M, Verheyen K, Wellhausen K, Zlatanov T, Bravo-Oviedo A (2015b) Growth and yield of mixed versus pure stands of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) analysed along a productivity gradient through Europe. Eur J For Res 134:927–947

    Article  Google Scholar 

  • Pretzsch H, Forrester DI, Bauhus J (eds) (2017) Mixed-species forests. Ecology and management. Springer, Berlin, p 653

    Google Scholar 

  • Puettmann KJ, Coates KD, Messier C (2009) A critique of silviculture. Managing for complexity. Island Press, Washington, DC

    Google Scholar 

  • Puettmann KJ, Messier C, Coates KD (2013) Managing forests as complex adaptive systems. Introductory concept and application. In: Messier C, Puettmann KJ, Coates KD (eds) Managing forests as complex adaptive systems: building resilience to the challenge of global change. Routledge, New York, pp 3–16

    Google Scholar 

  • Puettmann KJ, Wilson SM, Baker SC, Donoso PJ, Drössler L, Amente G, Harvey BD, Knoke T, Lu Y, Nocentini S, Putz FE, Yoshida T, Bauhus J (2015) Silvicultural alternatives to conventional even-aged forest management – what limits global adoption? For Ecosyst 2:8

    Article  Google Scholar 

  • Rametsteiner E, Eichler L, Berg J, Aggestam F, Zane EB, Plumet C (2009) Shaping forest communication in the European Union: public perceptions of forests and forestry. ECORYS, Tender no. AGRI-2008-EVAL-10

    Google Scholar 

  • Raymond P, Bédard S (2017) The irregular shelterwood system as an alternative to clearcutting to achieve compositional and structural objectives in temperate mixed wood stands. For Ecol Manag 398:91–100

    Article  Google Scholar 

  • Raymond P, Bédard S, Roy V, Larouche C, Tremblay S (2009) The irregular shelterwood system: review, classification, and potential application to forests affected by partial disturbances. J For 107(8):405–413

    Google Scholar 

  • Ribe RG (1989) The aesthetics of forestry: what has empirical preference research taught us? Environ Manag 13(10):55–74

    Article  Google Scholar 

  • Riofrío J, del Río M, Bravo F (2016) Mixing effects on growth efficiency in mixed pine forests. Forestry 90:381–392

    Google Scholar 

  • Riofrío J, del Río M, Pretzsch H, Bravo F (2017) Changes in structural heterogeneity and stand productivity by mixing Scots pine and Maritime pine. For Ecol Manag 405:219–228

    Article  Google Scholar 

  • Röhrig E, Bartsch N, von Lüpke B (2006) Waldbau auf ökologischer Grundlage. Eugen Ulmer, Stuttgart, p 479

    Google Scholar 

  • Schraml U, Volz K-R (2009) Do species matter? Valuable broadleaves as an object of public perception and policy. In: Spiecker H (ed) Valuable broadleaved forests in Europe. 211–236. S. Brill, Leiden/Boston/Köln, pp 213–236

    Google Scholar 

  • Schütz J-P (1999) Close-to-nature silviculture: is this concept compatible with species diversity? Forestry 72:359–366

    Article  Google Scholar 

  • Schütz J-P, Götz M, Schmid W, Mandallaz D (2006) Vulnerability of spruce (Picea abies) and beech (Fagus sylvatica) forest stands to storms and consequences for silviculture. Eur J For Res 125:291–302

    Article  Google Scholar 

  • Seppälä R, Buck A, Katila P (2009) Adaptation of forests and people to climate change. A Global Assessment Report, IUFRO World Series Volume 22. Helsinki, p 224

    Google Scholar 

  • SFM (2015) Madrid ministerial declaration, 25 years together promoting sustainable forest management in Europe, 7th Forest Europe Ministerial conference, Madrid 20–21 October 2015

    Google Scholar 

  • Shua K, Wende S, Wagner S, Feger K-H (2015) Soil chemical and microbial properties in a mixed stand of spruce and birch in the Ore Mountains (Germany) – a case study. Forests 6:1949–1965

    Article  Google Scholar 

  • Skrzyszewski J, Pach M, Krzysztof R, Szafron M, Stenka Z (2017) Modelling the basal area increment in mature silver fir stands. Sylwan 161(6):467–475 (in Polish)

    Google Scholar 

  • Spiecker H (2003) Silvicultural management in maintaining biodiversity and resistance of forests in Europe – temperate zone. J Environ Manag 67:55–65

    Article  Google Scholar 

  • Tyrväinen L, Mäntymaa E, Ovaskainen V (2014) Demand for enhanced forest amenities in private lands: the case of the Ruka-Kuusamo tourism area, Finland. Forest Policy Econ 47:4–13

    Article  Google Scholar 

  • Tyrväinen L, Plieninger T, Sanesi G (2017) How does the forest-based bioeconomy relate to amenity values? In: Winkel G (ed) Towards a sustainable European forest-based bioeconomy – assessment and the way forward. What Science Can Tell Us 8. EFI, pp 92–100

    Google Scholar 

  • Vilà-Cabrera A, Coll L, Martínez-Vilalta J, Retana J (2018) Forest management for adaptation to climate change in the Mediterranean basin: a synthesis of evidence. For Ecol Manag 407:16–22

    Article  Google Scholar 

  • Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci USA 96:1463–1468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has been supported by COST Action FP1206 EuMIXFOR. The authors are grateful to all those in the different countries who provide information about mixed-species forest management used for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Pach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pach, M. et al. (2018). Silviculture of Mixed Forests: A European Overview of Current Practices and Challenges. In: Bravo-Oviedo, A., Pretzsch, H., del Río, M. (eds) Dynamics, Silviculture and Management of Mixed Forests. Managing Forest Ecosystems, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-91953-9_6

Download citation

Publish with us

Policies and ethics