Advertisement

Integration of Neural Machine Translation Systems for Formatting-Rich Document Translation

  • Mārcis Pinnis
  • Raivis Skadiņš
  • Valters Šics
  • Toms Miks
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10859)

Abstract

In this paper, we present our work on integrating neural machine translation systems in the document translation workflow of the cloud-based machine translation platform Tilde MT. We describe the functionality of the translation workflow and provide examples for formatting-rich document translation.

Keywords

Neural machine translation Document translation System integration 

Notes

Acknowledgments

The research has been supported by the “Forest Sector Competence Centre” within the project “Forestry industry communication technologies” of EU Structural funds, ID n\(^{\circ }\) 1.2.1.1/16/A/009.

References

  1. 1.
    Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Proceedings of ICLR 2015 (2015)Google Scholar
  2. 2.
    Escartın, C.P., Arcedillo, M.: Machine translation evaluation made fuzzier: a study on post-editing productivity and evaluation metrics in commercial settings. In: Proceedings of MT Summit XV, p. 131 (2015)Google Scholar
  3. 3.
    Federico, M., Bertoldi, N., Cettolo, M., Negri, M., Turchi, M., Trombetti, M., Cattelan, A., Farina, A., Lupinetti, D., Martines, A., et al.: The MateCat tool. In: Proceedings of COLING 2014: System Demonstrations, pp. 129–132 (2014)Google Scholar
  4. 4.
    Koehn, P., Och, F.J., Marcu, D.: Statistical phrase-based translation. In: Proceedings of NAACL-HLT 2003, vol. 1, pp. 48–54 (2003)Google Scholar
  5. 5.
    Lommel, A.R., DePalma, D.A.: Europe’s leading role in machine translation. Technical report, Common Sense Advisory (2016)Google Scholar
  6. 6.
    Pinnis, M., Krišlauks, R., Deksne, D., Miks, T.: Neural machine translation for morphologically rich languages with improved sub-word units and synthetic data. In: Ekštein, K., Matoušek, V. (eds.) TSD 2017. LNCS (LNAI), vol. 10415, pp. 237–245. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-64206-2_27CrossRefGoogle Scholar
  7. 7.
    Sanchez-Torron, M., Koehn, P.: Machine translation quality and post-editor productivity. AMTA 2016, 16 (2016)Google Scholar
  8. 8.
    Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In: Proceedings of ACL 2015. Association for Computational Linguistics, Berlin (2015)Google Scholar
  9. 9.
    Skadina, I., Pinnis, M.: NMT or SMT: case study of a narrow-domain English-Latvian post-editing project. In: Proceedings of IJCNLP 2017 (Volume 1: Long Papers), pp. 373–383 (2017)Google Scholar
  10. 10.
    Vasiljevs, A., Skadinš, R., Tiedemann, J.: LetsMT!: a cloud-based platform for do-it-yourself machine translation. In: Proceedings of the ACL 2012 System Demonstrations, pp. 43–48, July 2012Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mārcis Pinnis
    • 1
  • Raivis Skadiņš
    • 1
  • Valters Šics
    • 1
  • Toms Miks
    • 1
  1. 1.TildeRigaLatvia

Personalised recommendations