Advertisement

Towards Ontology-Based Training-Less Multi-label Text Classification

  • Wael Alkhatib
  • Saba Sabrin
  • Svenja Neitzel
  • Christoph Rensing
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10859)

Abstract

In the under-explored research area of multi-label text classification. Substantial amount of research in adapting and transforming traditional classifiers to directly handle multi-label datasets has taken place. The performance of traditional statistical and probabilistic classifiers suffers from the high dimensionality of feature space, training overhead and label imbalance. In this work, we propose a novel ontology-based approach for training-less multi-label text classification. We transform the classification task into a graph matching problem by developing a shallow domain ontology to be used as a training-less classifier. Thereby, we overcome the challenges of feature engineering and label imbalance of traditional methods. Our intensive experiments, using the EUR-Lex dataset, prove that our method provides a comparable performance to the state-of-the-art techniques in terms of Macro \(F_1\)-Score.

Keywords

Semantics Statistics Feature selection Ontology Text classification Typed dependencies 

References

  1. 1.
    Sorower, M.S.: A literature survey on algorithms for multi-label learning, Oregon State University, Corvallis, vol. 18 (2010)Google Scholar
  2. 2.
    Janik, M.G.: Training-less ontology-based text categorization, Ph.D. dissertation, UGA (2008)Google Scholar
  3. 3.
    Zhou, P., El-Gohary, N.: Ontology-based multilabel text classification of construction regulatory documents. J. Comput. Civ. Eng. 30(4) (2015). 04015058CrossRefGoogle Scholar
  4. 4.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th Conference on Computational Linguistics-Volume 2, pp. 539–545. Association for Computational Linguistics (1992)Google Scholar
  5. 5.
    Alkhatib, W., Rensing, C., Silberbauer, J.: Multi-label text classification using semantic features and dimensionality reduction with autoencoders. In: Gracia, J., Bond, F., McCrae, J.P., Buitelaar, P., Chiarcos, C., Hellmann, S. (eds.) LDK 2017. LNCS (LNAI), vol. 10318, pp. 380–394. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59888-8_32CrossRefGoogle Scholar
  6. 6.
    Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: ACL (System Demonstrations), pp. 55–60 (2014)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Wael Alkhatib
    • 1
  • Saba Sabrin
    • 1
  • Svenja Neitzel
    • 1
  • Christoph Rensing
    • 1
  1. 1.Communication Multimedia LabTU DarmstadtDarmstadtGermany

Personalised recommendations