English Text Parsing by Means of Error Correcting Automaton

  • Oleksandr Marchenko
  • Anatoly Anisimov
  • Igor Zavadskyi
  • Egor Melnikov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10859)


The article considers developing an effective flexible model for describing syntactic structures of natural language. The model of an augmented transition network in the automaton form is chosen as a basis. This automaton performs the sentence analysis algorithm using forward error detection and backward error correction passes. The automaton finds an optimal variant of error corrections using a technique similar to the Viterbi decoding algorithm for error correction convolution codes. As a result, an effective tool for natural language parsing is developed.


Grammatical error correction Augmented transition network Grammatical automaton Syntactic analysis 


  1. 1.
    Szanser, A.J.: Automatic error-correction in natural languages. Inf. Storage Retr. 5(4), 169–174 (1970)CrossRefGoogle Scholar
  2. 2.
    Riseman, E.M., Hanson, A.R.: A contextual postprocessing system for error correction using binary n-grams. IEEE Trans. Comput. C–23(5), 480–493 (1974)CrossRefGoogle Scholar
  3. 3.
    MacDonald, N.H., Frase, L.T., Gingrich, P.S., Keenan, S.A.: The Writer’s workbench: computer aids for text analysis. IEEE Trans. Commun. 30(1), 105–110 (1982)CrossRefGoogle Scholar
  4. 4.
    Jensen, K., Heidorn, G.E., Miller, L.A., Ravin, Y.: Parse fitting and prose fixing: getting a hold on ill-formedness. Comput. Linguist. Spec. Issue Ill-formed Input 9(3–4), 147–160 (1983)Google Scholar
  5. 5.
    Richardson, S., Braden-Harder, L.: The Experience of Developing a Large-Scale Natural Language Processing System: Critique. In: Jensen, K., Heidorn, G.E., Richardson, S.D. (eds.) Natural Language Processing: The PLNLP Approach. The Kluwer International Series in Engineering and Computer Science (Natural Language Processing and Machine Translation), pp. 77–89. Springer, Boston (1993). Scholar
  6. 6.
    Adriaens, G.: Simplified English grammar and style correction in an MT framework: the LRE SECC project. Aslib Proc. 47(3), 73–82 (1995)CrossRefGoogle Scholar
  7. 7.
    Sun, C., Jin, X., Lin, L., Zhao, Y., Wang, X.: Convolutional neural networks for correcting english article errors. In: Li, J., Ji, H., Zhao, D., Feng, Y. (eds.) NLPCC 2015. LNCS (LNAI), vol. 9362, pp. 102–110. Springer, Cham (2015). Scholar
  8. 8.
    Yuan, Z. and Briscoe, T.: Grammatical error correction using neural machine translation. In: Proceedings of NAACL-HLT 2016, pp. 380–386 (2016)Google Scholar
  9. 9.
    Woods, W.: Transition network grammars for natural language analysis. Commun. ACM 13(10), 591–606 (1970)CrossRefGoogle Scholar
  10. 10.
    Feldman, J., Abou-Faycal, I., Frigo, M.: A fast maximum-likelihood decoder for convolutional codes. In: Vehicular Technology Conference, pp. 371–375 (2002)Google Scholar
  11. 11.
    Dahlmeier, D., Ng, H.T., Wu, S.M.: Building a large annotated corpus of learner english: the NUS Corpus of Learner English. In: Proceedings of the 8th Workshop on Innovative Use of NLP for Building Educational Applications, pp. 22–31 (2013)Google Scholar
  12. 12.
    Dale, R., Kilgarriff, A.: Helping our own: the HOO 2011 pilot shared task. In: Proceedings of the 13th European Workshop on Natural Language Generation, pp. 242–249 (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Oleksandr Marchenko
    • 1
  • Anatoly Anisimov
    • 1
  • Igor Zavadskyi
    • 1
  • Egor Melnikov
    • 2
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.P1:k ltdLondonUK

Personalised recommendations