Skip to main content

Breeding of Coconut (Cocos Nucifera L.): The Tree of Life

Abstract

Coconut ( Cocos nucifera L.) is a continuous fruiting perennial tropical fruit and oil crop that is mainly cultivated in the humid and sub-humid coastal tropics. It is a perennial multipurpose palm with great importance in sustaining the life of the people who grow them for various economical uses. As coconut is known as the tree of life, efforts have been made to sustain its production to fulfill the demands of the people. In this regard, coconut genetic resources have been widely exploited through selection , hybridization for a number of desirable traits that resulted in the development of many productive varieties. With increasing demand from the coconut sector, particularly the nontraditional coconut products , it is indeed crucial to identify and screen the potential varieties. However, due to the biological nature of the coconut , the traditional way of breeding might not be feasible; therefore, molecular -aided breeding can be the best alternative. Molecular -aided breeding can play an important role in future coconut breeding programs with the advancements in biotechnology . The strategies suggested for future breeding programs , include development of new high yielding, stress tolerant and disease resistant varieties with the benefits of providing high value-added products, like inflorescence sap or high oil content , and varieties with slow vertical growth. With the availability whole genomic sequences of coconut more opportunities exist for the development of molecular markers , thus encouraging the use of molecular -aided breeding in future coconut breeding programs .

Keywords

  • Coconut
  • Genetic resources
  • Molecular markers
  • Omics
  • Tissue culture
  • Breeding

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-91944-7_17
  • Chapter length: 53 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-91944-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 17.1
Fig. 17.2
Fig. 17.3

References

  • Akpan E (1994) Evaluation of tall coconut genotypes within Nigerian coconut germplasm bank. Oléagin (France) 49:13–20

    Google Scholar 

  • Apacible AR (1968) Selection of coconut. Sugar News (Philipp) 44:93–98

    Google Scholar 

  • Arellano J, Oropeza C (1995) Lethal yellowing. In: Oropeza C, Howard FW (eds) Lethal yellowing: research and practical aspects. Kluwer Academic Publisher, The Netherlands, pp 1–15

    Google Scholar 

  • Arunachalam V, Jerard BA, Elangovan M et al (2001) Unexploited diversity in coconut palm (Cocos nucifera L.). Plant Genet Res News 127:39–43

    Google Scholar 

  • Ashburner G (1995) Genetic markers for coconut palms. In: Oropeza C, Howard FW (eds) Lethal yellowing: research and practical aspects. Kluwer Academic Publisher, The Netherlands, pp 173–186

    CrossRef  Google Scholar 

  • Ashburner GR, Rohde W (1994) Coconut germplasm characterization using DNA marker technology. In: Lynch MF (ed) Coconut improvement in the South Pacific. ACIAR, Canberra, Proceedings of a workshop held in Taveuni, Fiji Islands, pp 44–46

    Google Scholar 

  • Ashburner GR, Thompson WK, Halloran GM (1997) RAPD analysis of South Pacific coconut palm populations. Crop Sci 37(3):992–997

    CrossRef  Google Scholar 

  • Baker WJ, Couvreur TLP (2013a) Global biogeography and diversification of palm sheds light on the evolution of tropical lineage. II. Diversification history and origin of regional lineages. J Biogeogr 40:286–298

    CrossRef  Google Scholar 

  • Baker WJ, Couvreur TLP (2013b) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. Historical biogeography. J Biogeogr 40:274–285

    CrossRef  Google Scholar 

  • Batugal P (1999) The role of international cooperation in the development of biotechnology in coconut. In: Verdeil JL, Ashburner GR, Oropeza C et al (eds) Current advances in coconut biotechnology. Kluwer Academic Publisher, London, pp 19–30

    CrossRef  Google Scholar 

  • Batugal P (2004) Country survey (2001–2003). Proposed globally coordinated breeding programme. COGENT, IPGRI-APO, Serdang, Malaysia

    Google Scholar 

  • Batugal P, Bourdeix R, Baudouin L (2009) Coconut breeding. In: Jain SM (eds) Breeding plantation tree crops: tropical species. Springer-Verlag, New York, pp 327–375

    CrossRef  Google Scholar 

  • Batugal P, Engelmann F (eds) (1998) Coconut embryo in vitro culture. Proceedings of the first workshop on embryo culture, Banao, Guinobatan, Albay, Philippines. IPGRI-APO, Serdang, Malaysia, pp 27–31 October 1997

    Google Scholar 

  • Batugal P, Ramanatha Rao V (1998) Coconut breeding. Paper presented at the workshop on standardization of coconut breeding research techniques, Port Bouet, Cote d’Ivoire, pp 20–25 June 1994

    Google Scholar 

  • Batugal P, Ramanatha Rao V, Oliver J (2005) Coconut genetic resources. IPGRI, Rome

    Google Scholar 

  • Baudouin L, Lebrun P (2002) The development of a microsatellite kit and dedicated software use with coconuts. Burotrop Bull 17:16–20

    Google Scholar 

  • Beccari O (1917) The origin and dispersal of Cocos nucifera. Philipp J Sci 12 (Series C: Botany):27–43

    Google Scholar 

  • Been BO (1981) Observations on field resistance to lethal yellowing in coconut varieties and hybrids in Jamaica. Oléagin (France) 36:9–12

    Google Scholar 

  • Bourdeix R (1988) Effectiveness of mass selection on the yield component of coconut. Oleagineux 43:283–295

    Google Scholar 

  • Bourdeix R (1999) Coconut selection and breeding. In: Ohler JG (ed) Modern coconut management. Intermediate Technology Publications, FAO, Universeteit Leiden, pp 117–196

    Google Scholar 

  • Bourdeix R, Konan JL, N’Cho YP (2005) Coconut, a guide to traditional and improved varieties. Editions Diversiflora, Montpellier

    Google Scholar 

  • Branton RL, Blake J (1983) Development of organized structures in callus derived from explants of Cocos nucifera L. Ann Bot 52:673–678

    CrossRef  Google Scholar 

  • Burkill IH (1966) A dictionary of the economic products of the Malay Peninsula. Ministry of agriculture and co-operatives, Kuala Lumpur

    Google Scholar 

  • Cardeña R, Oropeza C, Zizumbo D (1998) Leaf proteins as markers useful in the genetic improvement of coconut palms. Euphytica 102(1):81–86. https://doi.org/10.1023/A:1018392908569

    CrossRef  Google Scholar 

  • Chan JL, Saénz L, Talavera C et al (1998) Regeneration of coconut (Cocos nucifera L.) from plumule explants through somatic embryogenesis. Plant Cell Rep 17(6):515–521. https://doi.org/10.1007/s002990050434

    CrossRef  CAS  Google Scholar 

  • Chattopadhyay N, Bandyopadhyay A, Hore JK et al (2004a) Effect of seed size and sowing methods on germination and seedling vigour of coconut. paper presented at the national conference on plants, microbes and environment, March 20–21, 2004

    Google Scholar 

  • Chattopadhyay N, Sharangi AB, Hore JK (2004b) Effect of position and depth of planting on germination of coconut. Haryana J hort Sci 33(1/2):85–86

    Google Scholar 

  • Child R (1974) Coconuts, 2nd edn. Longman, London

    Google Scholar 

  • Chin HF, Roberts EH (eds) (1980) Recalcitrant crop seeds. Tropical Press Sdn. Bhd, Kuala Lumpur, Malaysia

    Google Scholar 

  • Chowdhury D, Nath JC, Mohan NK (2001) ‘Kamrupa’—a newly released coconut variety by Assam Agricultural University. Indian Coco J 31:12–13

    Google Scholar 

  • Cintra F, Passos EEM, De Leal LS (1993) Evaluation of root system distribution in tall coconut cultivars. Oléagin (France) 48:453–461

    Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos T R Soc B, Biological Sciences 363(1491):557–572. https://doi.org/10.1098/rstb.2007.2170

    CrossRef  CAS  Google Scholar 

  • Cook OF (1901) The origin and dispersal of the cocoa palm. Contr US National Herb 7:257–293

    Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22(11):961–975. https://doi.org/10.1016/j.tplants.2017.08.011

    CrossRef  PubMed  CAS  Google Scholar 

  • Crouch JH (2000) Molecular marker-assisted breeding. Paper presented at the Asia and pacific seed association annual conference, September 2000, in Phuket, Thailand

    Google Scholar 

  • Cutter VM Jr, Wilson KS (1954) Effect of coconut endosperm and other growth stimulants upon the development in vitro of embryos of Cocos nucifera. Bot Gaz 115:234–240. https://doi.org/10.2307/2472513

    CrossRef  CAS  Google Scholar 

  • D’Amato A, Fasoli E, Righetti PG (2012) Harry Belafonte and the secret proteome of coconut milk. J Proteomics 75(3):914–920. https://doi.org/10.1016/j.jprot.2011.10.009

    CrossRef  PubMed  CAS  Google Scholar 

  • De Condolle A (1886) Origin of cultivated plants, 2nd edn. Hafner Publishing Company, New York

    Google Scholar 

  • De Guzman EV, Del Rosario DA (1964) The growth and development of Cocos nucifera L. makapuno embryo in vitro. Philipp Agricul 48:82–94

    Google Scholar 

  • de Nuce de Lamonthe M (1991) Coconut improvement—needs and opportunities. In: Papers of the IBPGR workshop on coconut genetic resources, International Crop Network Series No. 8. IBPGR, Rome, Italy

    Google Scholar 

  • Eeuwens CJ, Blake J (1977) Culture of coconut and date palm tissue with a view to vegetative propagation. Acta Hort 78:277–286

    CrossRef  Google Scholar 

  • Engelmann F (2002) Coconut. In: Pence VC, Sandoval JA, Villalobos VM, Engelmann F (eds.) In vitro collecting techniques for germplasm conservation. IPGRI Technical Bulletin N°7. IPGRI, Rome, Italy, pp 68–71

    Google Scholar 

  • Engels JMM, Wood D (1999) Conservation of agrobiodiversity. In: Wood D (eds) Agrobiodiversity characterization, utilization and management. CAB International, Wallingford, UK, pp 355–385

    Google Scholar 

  • Fan H, Xiao Y, Yang Y et al (2013) RNA-Seq Analysis of Cocos nucifera: Transcriptome Sequencing and de novo Assembly for Subsequent Functional Genomics Approaches. PLoS ONE 8(3):e59997. https://doi.org/10.1371/journal.pone.0059997

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • FAOSTAT (2014) http://www.fao.org/faostat/en/#data/QC. Accessed 2 September 2017

  • Fernando SC, Verdeil JL, Hocher V et al (2003) Histological analysis of plant regeneration from plumule explants of Cocos nucifera. Plant Cell Tiss Org 72(3):281–283

    CrossRef  Google Scholar 

  • Fernando SC, Vidhanaarachchi VRM, Weerakoon LK et al (2010) What makes clonal propagation of coconut difficult? AsPac J Mol Biol Biotechnol 18:163–165

    Google Scholar 

  • Frankel R, Galun E (1977) Pollen mechanisms, reproduction and plant breeding. Springer-Verlag, Berlin Heidelberg, New York

    CrossRef  Google Scholar 

  • Geethalakshmi P, Parthasarathy VA, Niral V (2005) Genetic diversity among coconut genotypes using isozymes. Asian J Plant Sci 4:678–683

    CrossRef  CAS  Google Scholar 

  • George EF, Sherrington PD (1984) Plant pPropagation by tissue culture: handbook and directory of commercial laboratories. Exegenetics Eversley, Busingstoke, London

    Google Scholar 

  • Gunn BF (2004) The phylogeny of the Cocoeae (Arecaceae) with emphasis on Cocos nucifera. VIII International aroid conference, St. Louis, Missouri, USA, 9–11 August 1999. Ann Mo Bot Gard 91(3):505–522

    Google Scholar 

  • Gupta PK, Kendurkar SV, Kulkarni VM et al (1984) Somatic embryogenesis and plants from zygotic embryos of coconut (Cocos nucifera L.) in vitro. Plant Cell Rep 3:222–225

    CrossRef  CAS  PubMed  Google Scholar 

  • Hardwick SA, Deveson IW, Mercer TR (2017) Reference standards for next-generation sequencing. Nat Rev Genet 18(8):473–484

    CrossRef  CAS  PubMed  Google Scholar 

  • Harries HC (1977) The Cape Verde region (1499–1549), the key to coconut culture in the Western Hemisphere? Turrialba 27:227–231

    Google Scholar 

  • Harries HC (1978) Evolution, dissemination, and classification of Cocos nucifera. Bot Rev 44:265–320

    CrossRef  Google Scholar 

  • Harries HC (1990) Malesian origin for a domestic Cocos nucifera. The plant diversity of Malesia. Springer, Dordrecht, The Netherlands, pp 351–357

    Google Scholar 

  • Harries HC (1995) Coconut (Cocos nucifera L., Palmae). In: J. Smartt NWS (ed) Evolution of crop plants (2nd ed.). Longman Scientific and Technical, Burnt Mill, Harlow, UK, pp 389–394

    Google Scholar 

  • Hasan MM, Rafii MY, Ismail MR (2015) Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol Biotechnol Equip 29(2):237–254

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Hebbar KB, Balasimha D, Thomas GV (2013) Plantation crops response to climate change: coconut perspective. In: Singh H, Rao N (eds) Climate-resilient horticulture: adaptation and mitigation strategies. Springer, India, pp 177–187

    CrossRef  Google Scholar 

  • Huang J, Liu X, Lan Q et al (2016) Proteomic profile of coconuts. Eur Food Res Technol 242(3):449–455

    CrossRef  CAS  Google Scholar 

  • Huang YY, Lee CP, Fu JL et al (2014) De novo transcriptome sequence assembly from coconut leaves and seeds with a focus on factors involved in RNA-directed DNA methylation. G3 (Bethesda) 4(11):2147–2157

    Google Scholar 

  • IPCC (2007) Intergovernmental panel on climate change, special report on emissions scenarios. IPCC, Geneva. http://www.grida.no/climate/ipcc/emission/076

  • Jangra S, Mishra A, Kamboj D et al (2017) Engineering abiotic stress tolerance traits for mitigating climate change. In: Gahlawat S, Salar R, Siwach P et al (eds) Plant biotechnology: recent advancements and developments. Springer, Singapore, pp 59–73

    CrossRef  Google Scholar 

  • Jay M, Bourdois P, Potier F, Sanslaville E (1989) Initial results from the study of polymorphism of coconut leaf phenols. Oléagin (France) 44:158–161

    Google Scholar 

  • Jerard B, Damodaran V, Niral V et al (2013) Conservation and utilization of thairu thengai—soft endosperm coconut accession from Andaman Islands. J Plant Crops 41:14–21

    Google Scholar 

  • Jiang GL (2013) Molecular markers and marker-assisted breeding in plants. In: Andersen SB (ed) Plant breeding from laboratories to fields. In Tech, Rijeka, Croatia. https://doi.org/10.5772/52583 pp 45–83

  • Karun A, Sajini KK, Radha E et al (2008) Palm tissue and organ culture protocols, vol 51. Tech Bull CPCRI, Kasaragod

    Google Scholar 

  • Kasturi Bai K, Rajagopal V, Arunachalam V (2006) Assessment of diversity on coconut varieties for drought responsive physiological traits. J Plant Crops 34:118–120

    Google Scholar 

  • Khush GS (1987) List of gene markers maintained in the Rice Genetic Stock Center, IRRI. Rice Genet Newsl 4:56–62

    Google Scholar 

  • Kumar S, Salar RK (2017) Control of gene expression by RNAi: a revolution in functional genomics. In: Gahlawat S, Salar R, Siwach P et al (eds) Plant biotechnology: recent advancements and developments. Springer, Singapore, pp 17–57

    CrossRef  Google Scholar 

  • Kumar SN, Aggarwal PK (2013) Climate change and coconut plantations in India: impacts and potential adaptation gains. Agr Syst 117:45–54

    Google Scholar 

  • Lebrun P, N’cho YP, Seguin M et al (1998) Genetic diversity in coconut (Cocos nucifera L.) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101(1):103–108

    CrossRef  CAS  Google Scholar 

  • Lieben L (2017) Plant genetics: spatial transcriptomics in plants. Nat Rev Genet 18(7):394. https://doi.org/10.1038/nrg.2017.41

    CrossRef  PubMed  CAS  Google Scholar 

  • Liu X, Tang H, Li D, Hou L (2011) Genetic diversity of coconut cultivars in China by microsatellite (SSR) markers. Mol Plant Breed 2:83–91

    CAS  Google Scholar 

  • Liyanage DV (1955) Planting materials for coconut. Ceylon Coco Quart 6:75–80

    Google Scholar 

  • Liyanage DV (1958) Varieties and forms of coconut palms grown in Ceylon. Ceylon Coco Quart 9:1–10

    Google Scholar 

  • Manimekalai R, Nagarajan P (2006) Interrelationships among coconut (Cocos nucifera L.) accessions using RAPD technique. Genet Res Crop Evol 53 (6):1137–1144

    Google Scholar 

  • Mao Z (1986) An investigation on meteorological indices for coconut cultivation in China Oleagineux 41:119–128

    Google Scholar 

  • Mao Z, Lai Y (1993) The coconut germplasm of Hainan Island, China. Plant Genet Res Newsl 91:53–57

    Google Scholar 

  • Marechal H (1926) Observation and préliminary expériments on the coconut palm with a view to developing improved seed for Fiji. Fiji Agr J 1:16–45

    Google Scholar 

  • Massman JM, Jung HJG, Bernardo R (2013) Genomewide selection versus marker-assisted recurrent selection to improve grain yield and stover-quality traits for cellulosic ethanol in maize. Crop Sci 53(1):58–66

    CrossRef  CAS  Google Scholar 

  • Mauro H, Meerow AW, Borrone JW et al (2006) Ten informative markers developed from WRKY sequences in coconut (Cocos nucifera). Mol Ecol Notes 6:904–906

    CrossRef  CAS  Google Scholar 

  • Mayor PJ, Bernardo R (2009) Genomewide selection and marker-assisted recurrent selection in doubled haploid versus F2 populations. Crop Sci 49(5):1719–1725

    CrossRef  Google Scholar 

  • Meerow AW, Noblick L, Borrone JW et al (2009) Phylogenetic analysis of seven WRKY genes across the palm subtribe Attaleinae (Arecaceae) identifies Syagrus as sister group of the coconut. PLoS ONE 4(10):e7353. https://doi.org/10.1371/journal.pone.0007353

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Meerow AW, Noblick L, Salas-Leiva DE et al (2014) Phylogeny and historic biogeography of cocosoid palms (Aracaceae, Arecoideae, Cocoseae) inferred from sequences of six WRKY gene family loci. Cladistics: 1–26. http://dx.doi.org/10.1111/cla.12100

  • Meerow AW, Wisser RJ, Brown JS et al (2003) Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar. Theor Appl Genet 106(4):715–726

    CrossRef  PubMed  Google Scholar 

  • Moore D, Alexander L (1987) Aspects of migration and colonization of the coconut palm by the coconut mite, Eriophyes guerreronis (Keifer) (Acari: Eriophyidae). B Entomol Res 77(4):641–650

    CrossRef  Google Scholar 

  • Nair RV, Jerard BA, Thomas RJ (2016) Coconut breeding in India. In: Al-Khayri JM, Jain SM (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Dordrecht, pp 257–279

    CrossRef  Google Scholar 

  • Nambiar S (1988) Susceptibility of hybrid coconut varieties to Oryctes rhinoceros L. under rainfed conditions at Pilicode. In: Silas E, Aravindakshan M (eds) Coconut breeding and management. Kerala Agricultural University, Trichur, pp 158–160

    Google Scholar 

  • Nejat N, Cahill DM, Vadamalai G et al (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Genet Genomics 290(5):1899–1910. https://doi.org/10.1007/s00438-015-1046-2

    CrossRef  PubMed  CAS  Google Scholar 

  • Neuffer MG, Coe EH, Wessler S (1997) Mutants of maize. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Nguyen QT, Bandupriya HDD, López-Villalobos A et al (2015) Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta 242(5):1059–1076

    CrossRef  CAS  PubMed  Google Scholar 

  • Ohler JG (1984) Coconut, tree of life. FAO, Rome

    Google Scholar 

  • Palmer RG, Shoemaker RC (1998) Soybean genetics. In: Hrustic M, Vidic M (eds) Soybean institute of field and vegetative crops. Novi Sad, Yugoslavia, pp 45–82

    Google Scholar 

  • Patel JS (1938) The coconut: a monograph. Government Press, Madras, India

    Google Scholar 

  • Paul R, George J, Rajesh MK et al (2008) Genetic diversity in yellow dwarf populations of coconut assessed using RAPD markers. Indian J Hort 65:60–64

    Google Scholar 

  • Report of the genetics and plant breeding division. Annual report of the Coconut Research Institute of Sri Lanka. Coconut Research Institute of Sri Lanka, Lunuwila

    Google Scholar 

  • Perera L (2006) Report of the genetics and plant breeding division. Annual report of the Coconut Research Institute of Sri Lanka. Coconut Research Institute of Sri Lanka, Lunuwila

    Google Scholar 

  • Perera L, Perera S, Bandaranayake CK (2009) Coconut. In: Vollmann J (eds) Oil crops, Handbook of plant breeding 4. Springer-Verlag, New York, pp 369–396

    Google Scholar 

  • Perera L, Russell JR, Provan J et al (1998) Evaluating genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet 96(3/4):545–550

    CrossRef  CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J et al (2000) Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L.). Genome 43(1):15–21

    CrossRef  CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J et al (2003) Studying genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica 132(1):121–128

    CrossRef  CAS  Google Scholar 

  • Perera L, Russell JR, Provan J et al (1999) Identification and characterization of microsatellite loci in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8:344–346

    PubMed  CAS  Google Scholar 

  • Peries RRA (1998) Coconut breeding in Sri Lanka. Paper presented at the workshop on standardization of coconut breeding research techniques, 20–25 June 1994, Port Bouet, Côte d’Ivore. IPGRI-APO, Serdang, Selangor, Malaysia

    Google Scholar 

  • Prades A, Salum UN, Pioch D (2016) New era for the coconut sector. What prospects for research? OCL 23(6):D607

    Google Scholar 

  • Qiu D, Morgan C, Shi J et al (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114(1):67–80

    CrossRef  CAS  PubMed  Google Scholar 

  • Rajagopal V, Kasturi Bai KV, Kumar N (2005) Breeding for drought tolerance in coconut. In: Batugal P RV, Oliver J (ed) Coconut genetic resources. IPGRI Rome, pp 282–301

    Google Scholar 

  • Rajagopal V, Shivshankar S, Kasturibai KV et al (1988) Leaf water potential as an index of drought tolerance in coconut. Plant Phys Biochem 15:80–86

    Google Scholar 

  • Rajesh MK, Arunachalam V, Nagarajan P et al (2008) Genetic survey of 10 Indian coconut landraces by simple sequence repeats (SSRs). Sci Hortic 118(4):282–287. https://doi.org/10.1016/j.scienta.2008.06.017

    CrossRef  CAS  Google Scholar 

  • Rajesh MK, Radha E, Sajini KK et al (2005) Plant regeneration through organogenesis and somatic embryogenesis from plumular explants of coconut. J Plant Crops 33:9–17

    Google Scholar 

  • Ramanatha Rao V (1999) Complementary conservation strategy. In: Mal B, Mathur PN, Ramanatha Rao V (eds) Proceedings of the fourth meeting of SANPGR, 1–3 September 1998, Kathmandu, Nepal. IPGRI South Asia Office, New Delhi, India, pp 139–150

    Google Scholar 

  • Repellin A, Daniel C, Zuily-Fodil Y (1994) Merits of physiological tests for characterizing the performance of different coconut varieties subjected to drought. Oléagin (France) 49:155–168

    Google Scholar 

  • Saensuk C, Wanchana S, Choowongkomon K et al (2016) De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Sci 252:324–334

    CrossRef  CAS  PubMed  Google Scholar 

  • Samsudeen K, Jacob PM, Niral V et al (2006) Exploration and collection of coconut germplasm in Kadmat and Amini islands of Lakshadweep. India. Genet Resour Crop Evol 53:1721. https://doi.org/10.1007/s10722-005-1406-6

    CrossRef  Google Scholar 

  • Sankaran M, Damodaran V, Jerard BA et al (2015) Multiple spicata coconut (MSC): a rare type of coconut in Andaman Islands. Transcriptomics 3:123. https://doi.org/10.4172/2329-8936.1000123

    CrossRef  Google Scholar 

  • Santos G, Batugal P, Othman A et al (1996) Manual on standardized research techniques in coconut breeding. COGENT/IPGRI-APO, Serdang, Selangor, Malaysia

    Google Scholar 

  • Sihag M, Sethi K, Gahlawat SK et al (2017) Advances in computational tools for plant microRNA identification. In: Gahlawat S, Salar R, Siwach P et al (eds) Plant biotechnology: recent advancements and developments. Springer, Singapore, pp 1–16

    Google Scholar 

  • Singh R, Ong-Abdullah M, Low ET et al (2013) Oil palm genome sequence reveals divergence of interfertile species in Old and New worlds. Nature 500(7462):335–339

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Wei H, Cheng W et al. (2015) Development of INDEL markers for genetic mapping based on whole genome re-sequencing in soybean. G3 (Bethesda) 12:2793–2799

    Google Scholar 

  • Sugimura Y, Itano M, Salud CD et al (1997) Biometric analysis on diversity of coconut palm: cultivar classification by botanical and agronomical traits. Euphytica 98(1):29–35. https://doi.org/10.1023/a:1003053128120

    CrossRef  Google Scholar 

  • Sukendah S, Volkaert HA, Sudarsono S (2009) Isolation and analysis of DNA fragment of genes related to kopyor trait in coconut plant. Indones J Biotech 14(2):1169–1178

    Google Scholar 

  • Suslow TV, Thomas BR, Bradford KL (2002) Biotechnology provides new tools for plant breeding. In: ABC Series, Agricultural biotechnology in California. ANR Pub. 8043

    Google Scholar 

  • Teulat B, Aldam C, Trehin R et al (2000) An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100(5):764–771

    CrossRef  CAS  Google Scholar 

  • Thomas RJ, Josephrajkumar A (2013) Flowering and pollination biology in coconut. J Plantat Crops 41(2):109–117

    Google Scholar 

  • Upadhyay A, Jayadev K, Manimekalai R et al (2004) Genetic relationship and diversity in Indian coconut accessions based on RAPD markers. Sci Hortic 99(3):353–362

    CrossRef  CAS  Google Scholar 

  • Vu HTT, Le Duc Duy DD, Ismail AM (2012) Marker-assisted backcrossing (MABC) for improved salinity tolerance in rice (Oryza sativa L.) to cope with climate change in Vietnam. Austral. J Crop Sci 6(12):1649–1654

    Google Scholar 

  • Vargas A, Blanco FA (2000) Fruit characterization of Cocos nucifera L. (Arecaceae) cultivars from the Pacific coast of Costa Rica and the Philippines. Genet Resour Crop Ev 47(5):483–487

    Google Scholar 

  • Verdeil JL, Hornung R, Jacobsen HJ et al (1999) Recent progress on coconut micropropagation through a joined effort involving different countries. In: Oropeza C, Verdeil JL, Ashburner GR et al (eds) Current advances in coconut biotechnology. Springer, Netherlands, Dordrecht, pp 391–405

    CrossRef  Google Scholar 

  • Vongvanrungruang A, Mongkolsiriwatana C, Boonkaew T et al (2016) Single base substitution causing the fragrant phenotype and development of a type-specific marker in aromatic coconut (Cocos nucifera). Genet Mol Res 15(3). https://doi.org/10.4238/gmr.15038748

  • Whitehead RA (1966) Progress in the freeze drying of coconut pollen. Oléagin (France) 21:281–284

    Google Scholar 

  • Xia W, Xiao Y, Liu Z et al (2014) Development of gene-based simple sequence repeat markers for association analysis in Cocos nucifera. Mol Breed 34(2):525–535

    CrossRef  CAS  Google Scholar 

  • Xiao Y, Luo Y, Yang Y et al (2013) Development of microsatellite markers in Cocos nucifera and their application in evaluating the level of genetic diversity of Cocos nucifera. Plant Omics 6(3):193

    Google Scholar 

  • Xiao Y, Xu P, Fan H et al (2017) The genome draft of Coconut (Cocos nucifera). GigaScience 2017. https://doi.org/10.1093/gigascience/gix095

  • Yamaki S, Ohyanagi H, Yamasaki M et al (2013) Development of INDEL markers to discriminate all genome types rapidly in the genus Oryza. Breed Sci 63(3):246–254

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziller R (1962) La sélection du cocotier dans le monde (Coconut selection throughout the world) Oléagineux (France) 17:837–846

    Google Scholar 

  • Zizumbo Villarreal D, Cardeña-Lopez R, Piñero D (2002) Diversity and phylogenetic analysis in Cocos nucifera L. Mexico. Genet Resour Crop Ev 49(3):237–245

    CrossRef  Google Scholar 

  • Zizumbo-Villarreal D, Fernández-Barrera M, Torres-Hernández N et al (2005) Morphological variation of fruit in Mexican populations of Cocos nucifera L. (Arecaceae) under in situ and ex situ conditions. Genet Resour Crop Ev 52(4):421–434

    Google Scholar 

  • Zuniga LC, Armedill AL, de Gala D (1969) Maternal and paternal selection on coconut. Philipp J Plant Ind 34:9–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaodong Yang .

Editor information

Editors and Affiliations

Appendices

Appendix 1

A list of public and private institutes involved in research related to coconut in various countries

Country Institution name Address Contact information
Bangladesh Bangladesh Agricultural Research Institute (BARI) GPO Box 2235, Joydepur Gazipur-1701, Bangladesh Tel.: 880-2-9800441/9332340
Fax: 880-2-841678
Email:baridg@bttb.net.bd
Benin Institut National Des Researches Agricoles Du Benin (INRAB) Station de Recherché sur le Cocotier
BP Cotonou, Benin
Tel.: 229-240101
Fax: 229-250266, 225-20 226985/21 248872
Brazil Coconut Germplasm Bank
EMBRAPA/CPATC
Av. Beira-Mar, 3250
CEP 49025-040 Aracaju-SE Brazil
Tel.: 55-79-2171300
Fax: 55-79-2319145
Email: tupi@cpatc.embrapa.br
China Coconut Research Institute,
Chinese Academy of Tropical Agriculture Science
Wenchang City, 571339 Hainan Province, China Tel.: 86-898-633330684
Fax: 86-898-63330673
Email: kb0684@163.com
Cook Island Ministry of Agriculture
Government of the Cook Islands
PO Box 96 Rarotonga, Cook Islands Tel.: 682-28711
Fax: 682-21881
Email:cimoa@oyster.net.ck
Costa Rica Ministerio de Agricultura y Ganaderia Siquirres Frente, Sevicentro Siquirres-Limon, Costa Rica Tel.: 506-718 6092
Fax:506-718-7191/768-8410
Côte d’Ivoire Station de Recherché Marc Delorme,
Centre National De Recherché Agronomique (CNRA)
Port Bouet, 07 PO Box 13, Abidjan 07, Cote d’Ivoire Tel.:225-21-248872/248067
Cuba Ministerio de La Agricultura
Instituto de Investigaciones de Citricos y Otros Frutales (IICF)
Ave. 7ma No: 3005 entre, 30 y 32, Miramar, Playa, Havana 10600, Cuba Tel.: 537-293585/225526/246794
Fax: 537-246794/537-335217
Email: iicit@ceniai.inf.cu
Fiji Ministry of Agriculture, Fisheries and Forests Private Mail Bag, Raiwaqa, Suva, Fiji Tel.: 679-477044 ext.263
Fax: 679-400262
Email: krsinfo@is.com.fj
Ghana Oil Palm Research Institute PO Box 74, Kade, Ghana Tel.: 031-804-710229 (Director)/710226/710228
Fax: 031-233-46357
Email: csur@ghana.com
Guyana National Agriculture Research Institute (NARI) Mon Repos, East Coast Demerara, Guyana Tel.: 592-202841/42/43
Fax: 592-204481
Email: nari@guyana.net.gu
Haiti Ministry of Agriculture
Centre de Recherché et de Documentation Agricoles (CRDA)
Damien, Republique d’Haiti Tel.: 509 (22) 4503
Fax: 509 (45) 4034
India Central Plantation Crops Research Institute (CPCRI),
Indian Council of Agricultural Research
Kasaragod 671 124, Kerala State, India Tel.: 91-4994-430333
Fax: 91-4994-430322
Email: cpcri@x400.nicgw.nic.in
Indonesia Agency for Forestry and Estate Crops Research and Development,
Research Institute for Coconut and Palmae
PO Box 1004, Manado 95001, Indonesia Tel.: 62-431-812430
Fax: 62-431-812587
Email: balitka@mdo.mega.net.id
Jamaica Coconut Industry Board 18 Waterloo Road, PO Box 204
Kingston 10, Jamaica
Tel.: 1-876-9261770
Fax: 1-876-9681360
Email: conchar@cwjamaica.com
Kenya Regional Research Centre (RRC) Mtwapa Box 16 Mtwapa, Kenya Tel.: 254-11 485842/39
Fax: 254-11 486207
Kiribati Division of Agriculture
Ministry of Natural Resources and Development
PO Box 267
Bikenibeu, Tarawa, Kiribati
Tel.: 686-28-139/108
Fax: 686-28-139/21-120
Malaysia Research Station Jalan Air Putih PO Box 44, 24007
Kemaman Terengganu, Malaysia
Tel.: 60 09-8646361/148
Fax: 60 09-8646361
Email: abo@mardi.my
Marshall Island Ministry of Resources and Development
Agriculture Division
PO Box 1727, Majuro, Marshall Islands Tel.: 692-625-3206/0740
Fax: 692-625-3005
Email: agridiv@ntamar.com
Mexico Centro de Investigacion Cientifica de Yucatan, A.C. (CICY) Apartado Postal 87, 97310 Cordemex Merida, Yucatan, Mexico Tel.: 52-99-813923/813966
Fax: 52-99-813900/813941
Email: cos@cicy.mx
Mozambique National Agriculture Research Institute (INIA) Box 3658, AV. Das FPLM, INIA-Maputo, Mozambique Tel.: 258(1)460097
Fax: 258(1)460074
Email: sancho@zebra.uem.mz
Myanmar Department of Agriculture,
Planning Ministry of Agriculture
Thiri Mingalar Lane, Off Kaba Aye Pagoda Road, Yangon, Myanmar Tel.: 095-1-665750
Fax: 095-1-663984/651184
Email: dap.moai@mpt.maid.net.mm
Nigeria Nigerian Institute for Oil Palm Research (NIFOR) PMB 1030 Benin City, Nigeria Tel.: 52-440130
Fax: 52-248549
Pakistan Pakistan Agricultural Research Council Plot No 20, G-5/1, Post Box 1031 45500 Islamabad, Pakistan Tel.: 92-51-920-7402
Fax: 92-51-920-2968/920-240908
Email: hashmi@reshem.sdnpk.undp.org
Papua New Guinea PNG Cocoa and Coconut Research Institute PO Box 1846
Rabaul, East New Britain Province
Rabaul, East New Britain, PNG
Tel.: 675 983-9108/983-9131/983-9185
Fax: 675 983-9115
Email: ccri@datec.com.pg
Philippines Agricultural Research and Development Branch,
Philippine Coconut Authority
Marcos Avenue, Diliman, Quezon City, Philippines Tel.: 632-920-0415/632-426-1398
Fax: 632-920-0415
Email: cbcarpio@mozcom.com
Samoa Ministry of Agriculture, Forests, Fisheries and Meteorology PO Box 1587, Apia, Samoa Tel.: 685 23416/20605
Fax: 685 23426/20607/23996
Email: apeters@lesamoa.net
Seychelles Crop Development and Promotion Division,
Ministry of Agriculture and Marine Resources
Grand Anse, PO Box 166, Victoria Mahe, Seychelles Tel.: 248-378252/378312
Fax: 248-225425
Email: antmoust@seychelles.net
Solomon Islands Dodo Creek Research Station,
Ministry of Agriculture and Fisheries
PO Box G 13, Honiara, Solomon Islands Tel.: 677-31111/31191/31037
Fax: 677-31039/21955/31037
Email: ibsram@welkam.solomon.com.sb
Sri Lanka Coconut Research Institute Bandirippuwa Estate, Lunuwila, Sri Lanka Tel.: 94-31-57391/253795/55300
Fax: 94-31-57391
Email: rescri@sri.lanka.net
Tanzania Mikocheni Agricultural Research Institute (MARI)
Ministry of Agriculture and Co-operatives
PO Box 6226
Dares Salaam, Tanzania
Tel.: 255 51-700552 or 74606
Fax: 255 51-75549 or 116504
Mobile: 255-812-784031
Email: arim@africaonline.co.tz
Thailand Department of Agriculture,
Horticulture Research Institute
Chatuchak, Bangkok 10900 Thailand Tel.: 66(2) 579-0583/579-0508/561-4666
Fax: 662-561-4667
Email: hort@doa.go.th
Tonga Ministry of Agriculture and Forestry Vainani Research Division, Nuku’alofa, Kingdom of Tonga Tel.: 676-23038
Fax: 676-32132/24271/23093
Trinidad and Tobago Ministry of Agriculture Arima PO 52 La Florissante Garden, Dabadie, Trinidad and Tobago Tel.: 1-809-642-8552/642-0718
Fax: 1-809-622-4246
Tuvalu Ministry of National Resources and Environment
Department of Agriculture
Private Mail Bag Vaiaku, Funafuti, Atoll, Tuvalu Tel.: 688 20-825 or 186
Fax: 688 20-826
Vanuatu Vanuatu Agricultural Research Centre PO Box 231, Espiritu Santo, Vanuatu Tel.: 678-36320/36130
Fax: 678-36355
Email: labouiss@pop.vanuatu.com.vu
Vietnam Oil Plant Institute of Vietnam (OPI) 171-175 Ham Nghi St., District 1, Ho Chi Minh City, Vietnam Tel.: 848-8297336/8243526
Fax: 848-8243528
Email: opi.vn@hcm.vnn.vn

Appendix 2

A list of important coconut cultivars , their important traits and cultivation location

Cultivar Important traits Cultivation location
Aguinaldo Tall Good adaptability to the distinct wet and dry climatic condition; multiple ridges encircling the nut Philippines
Andaman Giant Tall high copra content, tolerant to drought and highly susceptible to stem bleeding India
Andaman Ordinary Tall Sensitive to drought ; sensitive to the burrowing nematode; resistant to stem bleeding disease; high yield and high copra content India
Antique Tall Mapatag Husked nut shape is almost round Philippines
Aromatic Green Dwarf Late germinating Dwarf variety , bears fruits in 3-4 years, and with closely spaced leaf scars; young tender nuts having sweet water and meat which smells like pandan Thailand
Ayiramkachi Tall Susceptible to damage by rodents; susceptible to nut damage caused by the Eriophyid mite India
Bago Oshiro Tall Large-sized coconut ; resistance to leaf spot diseases and moderate tolerance to mites Oligonychus velascoi Rimando Philippines
Baguer Green Dwarf Grow well in areas with distinct dry and wet conditions Philippines
Ballesteros Tall Has an enlarged base that reaches an average circumference of more than 2 m Philippines
Bataan Tall The crown of this variety has a spherical shape Philippines
Baybay Tall High copra weight per nut, thin husk; bunches with short peduncles, fruits often trapped between the petioles of the leaves, and with very robust and thick stem; resistance to leaf spot diseases ; sensitive to mites Oligonychus velascoi Rimando Philippines
Borneo Tall Fruits are large and round to oval in shape; thick kernel and shell Indonesia
Brazilian Green Dwarf BGD is a legendary coconut variety ; sweet young nuts for drinking Brazil
Cambodia Green Dwarf The fruits are oblong in shape and intermediate green color Cambodia
Cambodia Tall Koh Rong Rapid growth, and possesses a thick straight stem, long fronds and large fruits Cambodia
Cameroon Kribi Tall CKT has quite a slender stem, which begins with a discreet bole at the base; susceptible to the so-called kribi disease, a form of lethal yellowing Cameroon
Cameroon Red Dwarf CRD is a short-statured cultivar; susceptible to drought Cameroon
Catigan Green Dwarf The inflorescence has a long peduncle; large fruits and robust stature Philippines
Chowghat Green Dwarf Shell and kernel are thin; sensitive to drought ; tolerance to root (wilt) disease; sensitive to stem bleeding; highly resistant to lethal yellowing India
Chowghat Orange Dwarf Thin shell and a thick kernel; sensitive to drought and water logging; susceptible to leaf spot (gray blight) and stem bleeding India
Cochin China Tall Tolerant to drought but slightly susceptible to nut damage caused by the eriophyid mite Acercia guerreronis; husked nut is round with thick kernel and strong shell Vietnam
Comoro Moheli Tall Widened stem, forming a broad bulb at the base Comoro
East African Tall Fruits are generally oval shaped with a thick husk. Nuts are oblong, thick shelled; moderately tolerant to lethal yellowing disease (LYD), sensitive to Pseudotheraptus wayi and mite attacks Tanzania
Gangabondam Green Dwarf Short inflorescence; sensitive to drought ; susceptible to root wilt disease India
Hainan Tall Tolerant to low temperature , resistance to typhoon China
Indian West Coast Tall High yield under good conditions; yields good quality and quantity of coconut sap. India
Java Tall Fruits have a thick kernel; tolerant to drought ; sensitive to root (wilt) disease; susceptible to stem bleeding; tolerant to burrowing nematodes; and sensitive to Ganoderma/Tanjavur wilt Indonesia
Kappadam Tall Heavy fruits with relatively low husk content; moderately tolerant to Radopholus similis India
Karkar Tall The fruits are very large with a thick strong shell and a thick layer of endosperm; susceptible to leaf spot damage caused by Drechslera incurvata Papua New Guinea
Kinabalan Green Dwarf Husked nut shape is either flat to almost round; grow well in areas with distinct dry and wet conditions Philippines
Kinabuhutan Tall Medium-sized fruit that is oblong in shape; sensitive to drought ; tolerant to Phytophthora sp. Indonesia
King Coconut The fruits are small with thin husk; fruits are yellow red in color and oblong in shape; susceptible to drought ; susceptible to the burrowing nematode Sri Lanka
Laccadive Micro Tall Large number of small and closely packed nuts; sensitive to drought , root (wilt) disease of Kerala and to stem bleeding disease; high oil content (> 72%) India
Laccadive Ordinary Tall Fruits are oblong in shape, medium-sized, with three prominent ridges on the triangular nut; oil-rich copra; tolerant to drought but susceptible to root (wilt) disease India
Lifou Tall The fruits of this cultivar are big in size, greenish-yellow in color and oblong in shape; the nut inside is also oblong with a thick kernel Lifou Island
Madang Brown Dwarf Very susceptible to coconut foliar decay; highly susceptible to cyclones; small palm with a slender stem and no bole Papua New Guinea
Malayan Green Dwarf Has thin stem with no or little bole; starts to flower 2–3 years after field planting Malaysia
Malayan Red Dwarf The seedling sprouts, the leaf stalks, the inflorescence, and the immature fruits are not really red but some kind of bright orange ; kernel is thin and gives rubbery copra; sensitive to drought and is subject to alternate bearing Malaysia
Malayan Straight Settlement Green Tall Kernel is thick with a solid shell; sensitive to drought ; tolerant to root (wilt) diseases ; sensitive to stem bleeding disease Malaysia
Malayan Yellow Dwarf Pale yellow is the color of the seedling sprouts, the leaf stalks, the inflorescence and the immature fruits; Malaysia
Mamuaya Tall Medium-sized, round-shaped fruits; thick endosperm with a thin husk Indonesia
Mapanget Tall Tolerant to drought and to Phytophthora diseases ; high yield of fruit and good quality copra Indonesia
Mapanget Tall-2 Sensitive to drought but tolerant to Phytophthora diseases ; high ratio of endosperm and oil content Indonesia
Marinsow Tall Tolerant to drought , water-logging and low temperature and also tolerant to Phytophthora sp. Indonesia
Markham Valley Tall Susceptible to coconut root (wilt) disease and to foliar decay caused by Mindus taffini; MVT has very large, round and greenish-yellow fruits with nuts that have a thick endosperm Papua New Guinea
Marshall Islands Green Dwarf The water of the nut is particularly sweet; the shiny green fruits are elongated. Marshall Islands
Mozambique Tall Fruits are oblong to round-shaped, quite variable in shape and size Mozambique
Nadora Tall Oval-shaped fruits India
New Caledonia Tall NCT has a thin and slender trunk with a medium-sized bole; well adapted to dry conditions and relatively low temperatures New Caledonia
Nigerian Tall Nigerian Tall is highly susceptible to nut damage caused by the Eriophyid mite Aceria guerreronis. The quality of the tender nut water is not very good Nigeria
Niu Kafa Tall Tonga Very big fruit , the shell is thick and solid and shows very distinctive thick veins; the stem is very thick Tonga
Niu Leka Dwarf Has a bulky stem with a very marked bole for a Dwarf; high copra content Fiji
Palu Tall Round fruits with very low husk content; resistant to drought because of its high content of epicuticular wax and leaf oil Indonesia
Panama Tall The nut with a thick shell is almost round, flatter at the base and contains a thick kernel; good tender nut water; good copra yielder Panama
Panama Tall Aguadulce The stem, which is massive and straight, begins with a marked bole; the fruits are round to ovoid Panama
Pandu Tall Medium- to big-sized fruits with almost round shape; husked nuts are large and round-shaped Indonesia
Pemba Red Dwarf Tanga PRD bears no bole, it has a thin stem; moderately tolerant to lethal disease of coconuts Tanzania
Philippines Lono Tall The kernel is thick with a thin shell Philippines
Philippines Ordinary Tall Tolerant to drought ; relatively tolerant to root (wilt) disease; moderately tolerant to the burrowing nematode; thick kernel Philippines
Pilipog Green Dwarf The pinkish color of its female flowers, root tips, and the base of shoots of newly germinated fruits; moderate tolerance to leaf spot diseases and tolerance to the attack of mites Oligonychus velascoi Rimando Philippines
Pungkol Tall Tolerant to Phytophthora Indonesia
Raja Brown Dwarf Ternate Small palm with a slender stem Indonesia
Rangiroa Tall RGT show susceptibility to Helminthosporium leaf spot Rangiroa
Rangoon Kobbari Tall Oil content in copra is 70% India
Rennell Island Tall Has a bulky stem that starts with a very big bole; leaf is quite short given its huge stem development Solomon Islands
Rotuman Tall Large fruits, with a good composition Fiji
Saint Vincent Tall The fruits are greenish yellow in color and oblong in shape; the husked nut is somewhat angular with thick kernel and thin shell; resistant to root (wilt) disease Trinidad and Tobago
Sakhi Gopal Tall Nut is oval in shape; kernel is thick India
Samoan Tall Spicata Bearing inflorescences with numerous female flowers Samoa
Samoan Yellow Dwarf The stem is thicker than those of the Malayan Yellow Dwarf; the stem starts producing a little bole under good conditions Samoa
San Ramon Tall The husk is thin while the kernel is thick; high copra and oil yields Philippines
Santongbolang Tall Small to medium in size with a round shape; has a stem that is rather thin for a tall coconut Indonesia
Sea Tall Sensitive to drought Indonesia
Seychelles Tall The nut is small and angular. The kernel is thick; high husk content Seychelles
Solomon Island Tall The fruits of the Solomon Island Tall are predominantly brown, slightly coppery and rarely green; flowering takes place 5 years after planting Solomon Islands
Sri Lanka Green Dwarf Resistant to the lethal yellowing; under good conditions, this Dwarf starts bearing 3 years after planting Sri Lanka
Sri Lanka Tall The husk content is slightly high; the kernel and shell are thick; tolerant to root (wilt) disease Sri Lanka
Sri Lanka Tall Ambakelle Fruit with more meat and less husk; ripe fruits do not have the equatorial belt Sri Lanka
Surinam Brown Dwarf Very short-statured palm; no bole and the crown is circular; the leaves are short with long, thin petioles; susceptible to fatal wilt/heart-rot disease Surinam
Tacunan Green Dwarf Has a thinner stem and fruits Philippines
Tagnanan Tall Good tolerance of nut fall and bud rot caused by Phytophthora fungi Philippines
Tahitian Red Dwarf Palm with red fruits, whose flowers, young fruits and root tips reveal a pink coloration of internal tissues Tahiti
Tahitian Tall Some fruits, of average size and excellent composition, have a surprisingly thin husk, less than
1 cm thick in some places; susceptible to Helminthosporium leaf spot
Tahiti
Thailand Green Dwarf Round small fruits; young tender nuts having sweet water and meat without smell like pandan Thailand
Thailand Tall Sawi Fruits begin to germinate high in the palms before falling naturally to the ground Thailand
Tiptur Tall Performs well in the low-rainfall areas; water of the tender coconut is tasty and sweet India
Tonga Tall An early yielder compare to the other talls Tonga
Vanuatu Red Dwarf Thin stem and no bole; the leaves are yellowish; small size of the fruit Vanuatu
Vanuatu Tall Stem is slender but broadens at the base; bearing numerous small fruits Vanuatu
West African Tall The stem of WAT is rather thin for a tall cultivar and it has a thin but sometimes curved bole; solid shell and thick kernel; drought susceptible Côte d’Ivoire
West African Tall Ouidah Fruit production generally begins 6–7 years after field planting Benin

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y., Iqbal, A., Qadri, R. (2018). Breeding of Coconut (Cocos Nucifera L.): The Tree of Life. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-91944-7_17

Download citation