Skip to main content

Mandarin (Citrus reticulata Blanco) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Fruits

Abstract

Mandarins including clementines, tangerines, satsumas, willowleaf, tangors and tangelos are the second largest cultivated group of citrus after sweet oranges and provide about 25% of world citrus production . Classical breeding has limited potential in citrus crop improvement and is handicapped mainly by nucellar embryony , long juvenility and self-incompatibility . Molecular biology tools have revealed mandarins as one of the primary citrus species and the ancestor of secondary species. A better understanding of genomics , valuable bioinformatics databases and recent advances in molecular breeding have shortened the breeding cycle and accelerated the breeder’s productivity towards improvement in economically-important traits. This chapter elucidates the economic significance, botanical classification and leading cultivars , global distribution of varieties, floral biology and functional genomics , germplasm biodiversity and conservation , origin and genetic backgrounds of polyembryony , haploids and polyploids and their significance in structural genomics , mutation breeding , seedlessness, scope of conventional and somatic hybridization , applications of molecular markers , bioinformatics databases and transgenics . Enhancing international collaboration, accelerated germplasm conservation and exchange programs, integration of classical breeding and the molecular biology tools discussed could enhance the pace of development of high-yielding cultivars with better resistance against changing climatic conditions, emerging biotic and abiotic stresses and help to ensure food security .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbate L, Tusa N, Fatta Del Bosco S et al (2012) Genetic improvement of Citrus fruits: new somatic hybrids from Citrus sinensis (L.) Osb. and Citrus limon (L.) Burm F. Food Res Int 48:284–290

    Article  CAS  Google Scholar 

  • Al Bachchu MA, Jin SB, Park JW et al (2011) Functional expression of Miraculin, a taste-modifying protein, in transgenic Miyagawa Wase Satsuma mandarin (Citrus unshiu Marc.). J Korean Soc Appl Biol Chem 54(1):24–29

    Article  CAS  Google Scholar 

  • Aleza P, Juárez J, Ollitrault P, Navarro L (2009) Production of tetraploid plants on non-apomictic citrus genotypes. Plant Cell Rep 28:1837–1846

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Juárez J, Cuenca J et al (2010a) Recovery of citrus triploid hybrids by embryo rescue and flow cytometry from 2x × 2x sexual hybridisation and its application to extensive breeding programs. Plant Cell Rep 29:1023–1034

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Juárez J, Ollitraul P, Navarro L (2010b) Polyembryony in non-apomictic citrus genotypes. Ann Bot 106(4):533–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Aleza P, Froelicher Y, Schwarz S et al (2011) Tetraploidization events by chromosome doubling of nucellar cells are frequent in apomictic citrus and are dependent on genotype and environment. Ann Bot 108(1):37–50

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aleza P, Juarez J, Cuenca J et al (2012) Extensive citrus triploid hybrid production by 2x × 4x sexual hybridizations and parent-effect on the length of the juvenile phase. Plant Cell Rep 31:1723–1735

    Article  CAS  PubMed  Google Scholar 

  • Aleza P, Cuenca J, Hernández M et al (2015) Genetic mapping of centromeres of the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes. BMC Plant Biol 15:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aleza P, Cuenca J, Juárez J et al (2016) Inheritance in doubled-diploid clementine and comparative study with SDR unreduced gametes of diploid clementine. Plant Cell Rep 35:1573–1586

    Article  CAS  PubMed  Google Scholar 

  • Allario T, Brumos J, Colmenero JM et al (2009) Autotetraploid Citrus limonia rootstocks are more tolerant to water deficit than parental diploids. In: Abstracts of the 1st international conference on polyploidy, hybridization and biodiversity, Université de Rennes, Saint-Malo, France, 17–20 May 2009

    Google Scholar 

  • Allario T, Brumos J, Colmenero-Flores JM et al (2011) Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J Exp Bot 62(8):2507–2519

    Article  PubMed  CAS  Google Scholar 

  • Altaf N (2007) A new Kinnow strain with 0–4 seeds per fruit. In: Abstracts of the international symposium on prospects of horticultural industry in Pakistan. Institute of Horticultural Sciences, University of Agriculture, Faisalabad

    Google Scholar 

  • Altaf N, Khan AR (2008) Radiation sensitivity of Kinnow tissues. Int J Life Sci 2(1):537–542

    Google Scholar 

  • Altaf S, Khan MM, Jaskani MJ et al (2014) Morphogenetic characterization of seeded and seedless varieties of Kinnow Mandarin (‘Citrus reticulata’ Blanco). Aust J Crop Sci 8(11):1542–1549

    Google Scholar 

  • Amar MH, Biswas MK, Zhang Z, Guo WW (2011) Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of Citrus germplasm collection. Sci Hort 128(3):220–227

    Article  CAS  Google Scholar 

  • An HJ, Jin SB, Kang BC, Park HG (2008) Production of somatic hybrids between Satsuma mandarin (Citrus unshiu) and navel orange (Citrus sinensis) by protoplast fusion. Plant Biol 51(3):186–191

    Article  CAS  Google Scholar 

  • Ano JB (2015) Mandarin variety named ‘BELALATE’. US Patent Application 13/999,398

    Google Scholar 

  • Atienza SG, Martin A, Pecchioni N et al (2008) The nuclear-cytoplasmic interaction controls carotenoid content in wheat. Euphy 159:325–331

    Article  CAS  Google Scholar 

  • Bacchi O (1943) Cytological observations in Citrus III. Megasporogenesis, fertilization and polyembryony. Bot Gazette 105:221–225

    Article  Google Scholar 

  • Balas FC, Osuna MD, Domínguez G et al (2014) Ex situ conservation of underutilised fruit tree species: establishment of a core collection for Ficus carica L. using microsatellite markers (SSRs). Tree Genet Gen 10:703–710

    Article  Google Scholar 

  • Barba-Gonzalez R, Lim K, Ramanna M (2005) Occurrence of 2n gametes in the F1 hybrids of Oriental × Asiatic lilies (Lilium): relevance to intergenomic recombination and backcrossing. Euphy 143:67–73

    Article  CAS  Google Scholar 

  • Bassene JB, Froelicher Y, Dhuique-Mayer C et al (2009) Non-additive phenotypic and transcriptomic inheritance in a citrus allotetraploid somatic hybrid between C. reticulata and C. limon: the case of pulp carotenoid biosynthesis pathway. Plant Cell Rep 28(11):1689

    Article  PubMed  CAS  Google Scholar 

  • Bassene JB, Froelicher Y, Dubois C et al (2010) Non-additive gene regulation in a citrus allotetraploid somatic hybrid between C. reticulata Blanco and C. limon (L.) Burm. J Hered 105(3):299

    Article  CAS  Google Scholar 

  • Bassene JB, Froelicher Y, Navarro L et al (2011) Influence of mitochondria on gene expression in citrus cybrid. Plant Cell Rep 30:1077–1085

    Article  CAS  PubMed  Google Scholar 

  • Batygina TB, Vinogradova GY (2007) Phenomenon of polyembryony, genetic heterogeneity of seeds. Russ J Dev Biol 38:126–151

    Article  Google Scholar 

  • Belaj A, Dominguez-Garcí MC, Atienza SG et al (2012) Developing a core collection of olive (Olea europaea L.) based on molecular markers (DArTs, SSRs, SNPs) and agronomic traits. Tree Genet Gen 8:365–378

    Article  Google Scholar 

  • Ben Yahmed J, Novillo P, Garcia-Lor A et al (2015) Salt tolerance traits revealed in mandarins (Citrus reticulata Blanco) are mainly related to root-to-shoot Cl translocation limitation and leaf detoxification processes. Sci Hort 191:90–100

    Article  CAS  Google Scholar 

  • Bermejo A, Primo-Millo E, Agustí M et al (2015) Hormonal profile in ovaries of mandarin varieties with differing reproductive behaviour. Plant Growth Reg 34(3):584–594

    Article  CAS  Google Scholar 

  • Bernier F, Berna A (2001) Germins and germin-like proteins: plant do-all proteins. But what do they do exactly? Plant Physiol Biochem 39:545–554

    Article  CAS  Google Scholar 

  • Bicknell RA, Koltunow AM (2004) Understanding apomixis: recent advances and remaining conundrums. Plant Cell 16:228–245

    Article  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L et al (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Sci 312(5776):1040–1043

    Google Scholar 

  • Bono R, Soler J, Fernández de Córdova L (1996) ‘Clemenpons’ and ‘Loretina’, two early clementine mandarin mutations of potential interest. In: Abstracts of 8th meeting of international society of citriculture, Sun City, South Africa, 12–17 May 1996

    Google Scholar 

  • Breto MP, Ruiz C, Pina JA, AsoAns MJ (2001) The diversification of Citrus clementina Hort. ex Tan, a vegetatively propagated crop species. Mol Phylogen Evol 21:285–293

    Article  CAS  Google Scholar 

  • Cabasson CM, Luro F, Ollitrault P, Grosser JW (2001) Nonrandom inheritance of mitochondrial genomes in citrus hybrids produced by protoplast fusion. Plant Cell Rep 20:604–609

    CAS  Google Scholar 

  • Cai XD, Liu X, Guo WW (2006) GFP expression as an indicator of somatic hybrids between transgenic Satsuma mandarin and Calamondin at embryoid stage. Plant Cell Tiss Org Cult 87:245–253

    Article  CAS  Google Scholar 

  • Cai XD, Fu J, Deng XX, Guo WW (2007) Production and molecular characterization of potential seedless cybrid plants between pollen sterile Satsuma mandarin and two seedy Citrus cultivars. Plant Cell Tiss Org Cult 90:275–283

    Article  Google Scholar 

  • Carbonell-Caballero J, Alonso R, Ibañez V et al (2015) A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Mol Biol Evol 32(8):2015–2035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmi N, Neuman-Leshem H, Frydman-Shani A et al (2014) State of Israel, Ministry of Agriculture and Rural Development, Agricultural Research Organization, Mediterranean mandarin tree named ‘ODEM’. US Patent Application 13/507,899

    Google Scholar 

  • Carputo D, Frusciante L, Peloquin SJ (2003) The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing Solanums. Genet 163:287–294

    CAS  Google Scholar 

  • Castle WS (1987) Citrus rootstocks. In: Rom RC (eds) Rootstocks for fruit crops. Wiley, New York, pp 361–399

    Google Scholar 

  • Cervera M, López M, Navarro L, Peña L (1998) Virulence and supervirulence of Agrobacterium tumefaciens in woody fruit plants. Phys Mol Plant Path 52:67–78

    Article  Google Scholar 

  • Cervera M, Ortega C, Navarro A et al (2000) Generation of transgenic citrus plants with the tolerance to salinity gene HAL2 from yeast. J Hort Sci Biotech 75:26–30

    Article  CAS  Google Scholar 

  • Cervera M, Navarro A, Navarro L, Peña L (2008) Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Phys 28:55–66

    Article  CAS  Google Scholar 

  • Chandra S, Huaman Z, Krishna SH, Ortiz R (2002) Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data—a simulation study. Theor App Gene 104:1325–1334

    Article  CAS  Google Scholar 

  • Chao CCT, Fang J, Devanand PS (2005) Long distance pollen flow in mandarin orchards determined by AFLP markers: implications for seedless mandarin production. J Am Soc Hort Sci 130:374–380

    CAS  Google Scholar 

  • Chen C, Bowman KD, Choi YA et al (2008) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genomes 4(1):1–10

    Google Scholar 

  • Cheng Y, De Vicente MC, Meng H et al (2005) A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera. Tree Phys 25:661–672

    Article  Google Scholar 

  • Chiancone B, Tassoni A, Bagni N, Germanà MA (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. ex Tan. Plant Cell Tiss Org Cult 87(2):145–153

    Google Scholar 

  • Chiancone B, Karasawa MG, Gianguzzi V et al (2015) Early embryo achievement through isolated microspore culture in Citrus clementina Hort. ex Tan., cvs. “Monreal Rosso” and “Nules”. Front Plant Sci 6:413

    Article  PubMed  PubMed Central  Google Scholar 

  • Chu CG, Xu SS, Friesen TL, Faris JD (2008) Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits. Mol Breed 22:251–266

    Article  CAS  Google Scholar 

  • Conner JA, Mookkan M, Huo H et al (2015) Parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci USA 112(36):11205–11210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cuenca J, Aleza P, Juárez J et al (2010) ‘Safor’ Mandarin: a new Citrus mid-late triploid hybrid. Hort Sci 45(6):977–980

    Google Scholar 

  • Cuenca J, Froelicher Y, Aleza P et al (2011) Multilocus half-tetrad analysis and centromere mapping in citrus, evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv ‘Fortune’. Hered 107:462–470

    Article  CAS  Google Scholar 

  • Cuenca J, Aleza P, Juárez J et al (2015a) Two new IVIA triploid mandarin hybrids: ‘alborea’ and ‘albir’. Acta Hort 1065:209–214

    Article  Google Scholar 

  • Cuenca J, Aleza P, Juárez J et al (2015b) Maximum-likelihood method identifies polyploidisation meiotic restitution mechanism from heterozygosity transmission of centromeric loci: application in citrus. Sci Rep 5:9897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curk F, Ancillo G, Garcia-Lor A et al (2014) Next generation haplotyping to decipher nuclear genomic interspecific admixture in Citrus species: analysis of chromosome 2. BMC Genet 15:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Curk F, Ancillo G, Ollitrault F et al (2015) Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties. PLoS One https://doi.org/10.1371/journal.pone.0125628

  • Curk F, Ollitrault F, Garcia-Lor A et al (2016) Phylogenetic origin of limes and lemons revealed by cytoplasmic and nuclear markers. Ann Bot 117:565–583

    Article  PubMed  PubMed Central  Google Scholar 

  • Davenport TL (1990) Citrus flowering. Hort Rev 12:349–408

    Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510

    Article  PubMed  CAS  Google Scholar 

  • Davies FS, Albrigo LG (2006) Citrus, crop production science in horticulture. CAB International, London

    Google Scholar 

  • De Storme N, Geelen D (2013) Sexual polyploidization in plants–cytological mechanisms and molecular regulation. New Phytol 198:670–684

    Article  PubMed  PubMed Central  Google Scholar 

  • Del Bosco, Sergio F, Edoardo N et al (2017) Somatic cybridization for Citrus: polyphenols distribution in juices and peel essential oil composition of a diploid cybrid from Cleopatra mandarin (Citrus reshni Hort. ex Tan.) and sour orange (Citrus aurantium L.). Genet Res Crop Evol 64(2):261–275

    Google Scholar 

  • Dilkes P, Comai L (2004) A differential dosage hypothesis for parental effects in seed development. Plant Cell 16:3174–3180

    Article  PubMed  PubMed Central  Google Scholar 

  • Djè Y, Heuertz M, Lefèbvre C, Vekemans X (2000) Assessment of genetic diversity within and among germplasm accessions in cultivated sorghum using microsatellite markers. Theor App Gen 100:918–925

    Article  Google Scholar 

  • Dutt M, Vasconcellos M, Song KJ et al (2010) In vitro production of autotetraploid Ponkan mandarin (Citrus reticulata Blanco) using cell suspension cultures. Euphy 173:235–242

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz Q, Sun J et al (2011) A robust, simple genotyping-by sequencing (GBS) approach for high diversity species, PLoS One. https://doi.org/10.1371/journal.pone.0019379

  • Endo T, Shimada T, Fujii H (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transg Res 14:703–712

    Article  CAS  Google Scholar 

  • Endo T, Shimada T, Nakata Y et al (2017) Abscisic acid affects expression of citrus FT homologs upon floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.). Tree Phys. https://doi.org/10.1093/treephys/tpx145

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. Vitro Cell Dev Biol-Plant 40:427–433

    Article  Google Scholar 

  • Erner Y, Bravdo B (1982) The importance of inflorescence leaves in fruit setting of Shamouti orange. Fruit Set Dev XXI IHC 139(29):107–112

    Google Scholar 

  • Esan EB (1973) A detailed study of adventive embryogenesis in the Rutaceae. Ph.D. thesis, University of California Riverside, USA

    Google Scholar 

  • Esen A, Soost RK (1971) Unexpected triploids in Citrus: their origin, identification, and possible use. J Hered 62:329–333

    Article  Google Scholar 

  • Fang YN, Qiu WM, Wang Y et al (2014) Identification of differentially expressed microRNAs from a male sterile Ponkan mandarin (Citrus reticulata Blanco) and its fertile wild type by small RNA and degradome sequencing. Tree Genet Genom 10(6):1567–1581

    Article  Google Scholar 

  • Fang YN, Zheng BB, Wang L et al (2016) High-throughput sequencing and degradome analysis reveal altered expression of miRNAs and their targets in a male-sterile cybrid pummelo (Citrus grandis). BMC Genom 17(1):591

    Article  CAS  Google Scholar 

  • FAOSTAT Database (2016) Available at: http://faostat.fao.org/default.aspx

  • Fatima B, Usman M, Ramzan M et al (2002) Interploid hybridization of Kinnow and Sweet Lime. Pak J Agri Sci 39:132–134

    Google Scholar 

  • Fatima B, Usman M, Khan IA et al (2010) Exploring citrus cultivars for underdeveloped and shriveled seeds: a valuable resource for spontaneous polyploidy. Pak J Bot 42(1):189–200

    Google Scholar 

  • Fatima B, Usman M, Khan MS et al (2015) Identification of citrus polyploids using chromosome counts, morphological and SSR markers. Pak J Agri Sci 52(1):107–114

    Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186:184–193

    Article  PubMed  CAS  Google Scholar 

  • Ford-Lloyd BV, Schmidt M, Armstrong SJ et al (2011) Crop wild relatives—undervalued, underutilized and under threat? BioSci 61:559–565

    Article  Google Scholar 

  • Forster BP, Erwin HB, Ken JK, Alisher T (2007) The resurgence of haploids in higher plants. Trends Plant Sci 12:368–375

    Article  PubMed  CAS  Google Scholar 

  • Frankel OH, Brown AHD (1984) Current plant genetic resources—a critical appraisal. In: Chopra VL, Joshi BC, Sharma RP (eds) Genetics new frontiers, vol 4. Oxford & IBH Publishing, New Delhi, pp 3–13

    Google Scholar 

  • Froelicher Y, Bassene JB, Jedidi-Neji E et al (2007) Induced parthenogenesis in mandarin: induction procedures and genetic analysis of plantlets. Plant Cell Rep 26(7):937–944

    Article  CAS  PubMed  Google Scholar 

  • Froelicher Y, Dambier D, Bassene JB et al (2008) Characterization of microsatellite markers in mandarin orange (Citrus reticulata Blanco). Mol Ecol Resour 8:119–122

    Article  PubMed  CAS  Google Scholar 

  • Froelicher Y, Mouhaya W, Bassene JB et al (2011) New universal mitochondrial PCR markers reveal new information on maternal citrus phylogeny. Tree Genet Genomes 7:49–61

    Article  Google Scholar 

  • Frost HB (1938) Nucellar embryony and juvenile characters in clonal varieties of Citrus. Hered 29(11):423–492

    Article  Google Scholar 

  • Frost HB, Soost RK (1968) Seed reproduction, development of gametes and embryos. In: Reuther W, Batchelor LD (eds) The citrus industry, vol 2. California, Berkeley, pp 290–324

    Google Scholar 

  • Fu J, Peng ZJ, Cai XD, Guo WW (2011) Regeneration and molecular characterization of interspecific somatic hybrids between Satsuma mandarin and two seedy sweet oranges for scion improvement. Plant Breed 130(2):287–290

    Article  CAS  Google Scholar 

  • Gallais A (2003) Quantitative genetics and breeding methods in autopolyploid plants. INRA, Paris

    Google Scholar 

  • Garcia-Lor A, Luro F, Navarro L, Ollitrault P (2012) Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies. Mol Gene Gen 287:77–94

    Article  CAS  Google Scholar 

  • Garcia-Lor A, Curk F, Snoussi-Trifa H et al (2013) A nuclear phylogenetic analysis; SNPs, indels and SSRs deliver new insights into the relationships in the “true citrus fruit trees” group (Citrinae, Rutaceae) and the origin of cultivated species. Ann Bot 111:1–19

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Lor A, Luro F, Ollitrault P, Navarro L (2015) Genetic diversity and population structure analysis of mandarin germplasm by nuclear, chloroplastic and mitochondrial markers. Tree Gen Geno 11:123

    Article  Google Scholar 

  • Garcia-Lor A, Luro F, Ollitrault P, Navarro L (2017) Comparative analysis of core collection sampling methods for mandarin germplasm based on molecular and phenotypic data. Ann App Biol 171:327–339

    Article  CAS  Google Scholar 

  • Garciapapi MA, Garciamartinez JL (1984) Endogenous plant-growth substances content in young fruits of seeded and seedless Clementine mandarin as related to fruit-set and development. Sci Hort 22:265–274

    Article  CAS  Google Scholar 

  • Germanà MA (2003) Somatic embryogenesis and plant regeneration from anther culture of Citrus aurantium and Citrus reticulata. Biológia 58:1–8

    Google Scholar 

  • Germanà MA (2007) Haploidy. In: Citrus genetics, breeding and biotechnology. Wallingford, pp 167–198

    Google Scholar 

  • Germanà MA (2011) Anther culture for haploid and doubled haploid production. Special issue: in vitro ploidy manipulation in the genomics era. Plant Cell Tiss Org Cult 104:283–300

    Article  Google Scholar 

  • Germanà MA, Chiancone B (2001) Gynogenetic haploids of Citrus after in vitro pollination with triploid pollen grains. Plant Cell Tiss Org Cult 66:59–66

    Article  Google Scholar 

  • Germanà MA, Crescimanno FG, Motisi A (2000) Factors affecting androgenesis in Citrus clementina Hort. ex. Tan. Adv Hort Sci 14(2):43–51

    Google Scholar 

  • Germanà MA, Chiancone B, Lain O, Testolin R (2005) Anther culture in Citrus clementina: a way to regenerate tri-haploids. Aust J Agri Res 56:839–845

    Article  Google Scholar 

  • Germanà MA, Aleza P, Carrera E et al (2013) Cytological and molecular characterization of three gametoclones of Citrus clementina. BMC Plant Biol 13(1):129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giakountis A, Coupland G (2008) Phloem transport of flowering signals. Curr Opin Plant Biol 11:687–694

    Article  PubMed  CAS  Google Scholar 

  • Gmitter FG (1993) Marsh grapefruit. Fruit Variet J 47:130–133

    Google Scholar 

  • Goldenberg L, Yaniv Y, Porat R, Carmi N (2014) Effects of gamma-irradiation mutagenesis for induction of seedlessness, on the quality of mandarin fruit. Food Nut Sci 5(10):943

    Google Scholar 

  • Golein B, Fifaei R, Ghasemi M (2011) Identification of zygotic and nucellar seedlings in citrus interspecific crosses by inter simple sequence repeats (ISSR) markers. African J Biotech 10(82):18965–18970

    Google Scholar 

  • Grosser JW (2017) Mandarin tree named N40W-6-3’. US Patent Application 14/756,644

    Google Scholar 

  • Grosser JW, Chandler JL (2003) New rootstock development via protoplast fusion. Acta Hort 622:491–497

    Article  Google Scholar 

  • Grosser JW, Gmitter FG (2005) 2004 SIVB congress symposium proceedings thinking outside the cell: applications of somatic hybridization and cybridization in crop improvement, with Citrus as a model. Vitro Cell Devel Biol 41(3):220–225

    Article  Google Scholar 

  • Grosser JW, Gmitter FG (2008) In vitro breeding provides new and unique opportunities for conventional breeding. In: Abstracts of the VI international symposium on in vitro culture and horticultural breeding, Acta Hort, 24 Aug 2008

    Google Scholar 

  • Grosser JW, Gmitter FG (2011) Protoplast fusion for production of tetraploids and triploids: applications for scion and rootstock breeding in citrus. Plant Cell Tiss Org Cult 104:343–357

    Article  CAS  Google Scholar 

  • Grosser JW, Ollitrault P, Olivares-Fuster O (2000) Somatic hybridization in citrus: an effective tool to facilitate variety improvement. Vitro Cell Dev Biol Plant 36:434–449

    Article  Google Scholar 

  • Guo WW, Prasad D, Cheng YJ et al (2004) Targeted cybridization in citrus: transfer of Satsuma cytoplasm to seedy cultivars for potential seedlessness. Plant Cell Rep 22:752–758

    Article  PubMed  CAS  Google Scholar 

  • Guo WW, Cai XD, Cheng YJ et al (2007) Protoplast technology and citrus improvement. Biotechnology and sustainable agriculture 2006 and beyond 2007. Springer, Dordrecht, pp 461–464

    Chapter  Google Scholar 

  • Guo WW, Xiao SX, Deng XX (2013) Somatic cybrid production via protoplast fusion for citrus improvement. Sci Hort 163:20–26

    Article  Google Scholar 

  • Guo F, Yu H, Xu Q, Deng X (2015) Transcriptomic analysis of differentially expressed genes in an orange-pericarp mutant and wild type in pummelo (Citrus grandis). BMC Plant Biol 15(1):44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harlan JR, De Wet JM (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390

    Article  Google Scholar 

  • Hearn CJ, Hutchison DJ (1977) The performance of Robinson and page citrus hybrids on 10 rootstocks. Proc Fla State Hort Soc 90:44–47

    Google Scholar 

  • Hensz RA (1971) Star Ruby, a new deep red-fleshed grapefruit variety with distinct tree characteristics. J Rio Grande Vall Hort Soc 25:54–58

    Google Scholar 

  • Honsho C, Yamamura E, Tsuruta K et al (2012) Unreduced 2n pollen production in ‘Nishiuchi Konatsu’ Hyuganatsu as inferred by pollen characteristics and progeny ploidy level. J Jpn Soc Hort Sci 81:19–26

    Article  Google Scholar 

  • Honsho C, Sakata A, Tanaka H et al (2016) Single pollen genotyping to estimate mode of unreduced pollen formation in Citrus tamurana cv. Nishiuchi Konatsu. Plant Reprod 29:189–197

    Article  PubMed  CAS  Google Scholar 

  • Horandl E (2006) The complex causality of geographical parthenogenesis. New Phytol 171:525–538

    PubMed  Google Scholar 

  • Hsu CY, Liu Y, Luthe DS, Yuceera C (2006) Poplar FT2 shortens the Juvenile phase and promotes seasonal flowering. Plant Cell 18:1846–1861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu Z, Zhang M, Wen Q et al (2007) Abnormal microspore development leads to pollen abortion in a seedless mutant of ‘Ougan’mandarin (Citrus suavissima Hort. ex Tanaka). J Am Soc Hort Sci 132(6):777–782

    Google Scholar 

  • Hummer KE, Dempewolf H, Bramel P et al (2015) Status of global strategies for horticultural fruit crops. Acta Hort 1101:147–152

    Article  Google Scholar 

  • Hussain T, Tausend P, Graham G, Ho J (2007) Registration of IBM2 SYN10 doubled haploid mapping population of maize. J Plant Regist https://doi.org/10.3198/jpr2005.11.0414crs

  • Hutten RCB, Schippers MGM, Hermsen JGTh, Ramanna MS (1994) Comparative performance of FDR and SDR progenies from reciprocal 4x − 2x crosses in potato. Theor Appl Genet 89:545–550

    Article  PubMed  CAS  Google Scholar 

  • Inoue H (1990) Effects of gibberellic acid spray and temperature in summer and autumn on shoot sprouting and flower bud differentiation of satsuma mandarin. J Jpn Soc Hort Sci 58:913–917

    Article  CAS  Google Scholar 

  • IPGRI (1999) Descriptors of Citrus. International Plant Genetic Resource Institute, Rome

    Google Scholar 

  • Iwamasa M (1976) Cultivars of Citrus. Shizuoka Citrus Grower’s Coop Association, Shimizu

    Google Scholar 

  • Iwasaki T, Owada A, Liya A (1959) Studies on the differentiation and development of the flower bud in citrus. II. On the period of morphological differentiation and developmental process of the flower buds. Bull Hart Sta National Tokai-Kinki Agric Exp Sta No 5, pp 4–35

    Google Scholar 

  • Jaeger KE, Graf A, Wigge PA (2006) The control of flowering in time and space. J Exp Bot 57:3415–3418

    Article  PubMed  CAS  Google Scholar 

  • Jedidi E, Kamiri M, Poullet T et al (2015) Efficient haploid production on ‘Wilking’ mandarin by induced gynogenesis. Acta Hort https://doi.org/10.17660/actahortic.2015.1065.60

  • JinPing X, LiGeng C, Ming B et al (2009) Identification of AFLP fragments linked to seedlessness in Ponkan mandarin (Citrus reticulata Blanco) and conversion to SCAR markers. Sci Hort 121:505–510

    Article  CAS  Google Scholar 

  • Johnson AW, Packer JG, Reese G (1965) Polyploidy, distribution, and environment. In: Wright HE (eds) The quaternary of the United States. Princeton University Press, Princeton, pp 497–507

    Google Scholar 

  • Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE Jr (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 56:293–297

    Google Scholar 

  • Kacar Y, Uzun A, Polat I et al (2013) Molecular characterization and genetic diversity analysis of mandarin genotypes by SSR and SRAP markers. J Food Agri Envir 11:516–521

    CAS  Google Scholar 

  • Kamiri M, Stift M, Srairi I et al (2011) Evidence for non-disomic inheritance in a Citrus interspecific tetraploid somatic hybrid between C. reticulata and C. limon using SSR markers and cytogenetic analysis. Plant Cell Rep 30:1415–1425

    Article  CAS  PubMed  Google Scholar 

  • Kepiro JL, Roose ML (2010) AFLP markers closely linked to a major gene essential for nucellar embryony (apomixis) in Citrus maxima × Poncirus trifoliata. Tree Genet Genomes 6:1–11

    Article  Google Scholar 

  • Khan I, Kender W (2007) Citrus breeding: introduction and objective. In: Khan IA (ed) Citrus genetics, breeding, and biotechnology. CABI, Oxfordshire, pp 1–8

    Chapter  Google Scholar 

  • Khan MM, Khan IA, Mughal AH (1992) Growth and morphological comparison of diploid and tetraploid strains of Kinnow mandarin. Proc Int Soc Citricult 1:93–95

    Google Scholar 

  • Khawale RN, Singh SK, Garg G et al (2006) Agrobacterium-mediated genetic transformation of Nagpur mandarin (Citrus reticulata Blanco). Curr Sci 25:1700–1705

    Google Scholar 

  • Kijas JMH, Thomas MR, Fowler JCS, Roose ML (1997) Integration of trinucleotide microsatellites into a linkage map of Citrus. Theor Applied Genet 94(5):701–706

    Google Scholar 

  • Kim MY, Kim IJ, Lee HY et al (2012) Characterization of the antioxidant properties of citrus mutants induced by gamma-rays. Life Sci 9:1495–1500

    Google Scholar 

  • Kitagawa H, Matsui T, Kawada K (1988) Some problems in marketing citrus fruits in Japan. Proc Int Soc Citricult 1:57–62

    Google Scholar 

  • Kőszegi D, Johnston AJ, Rutten T et al (2011) Members of the RKD transcription factor family induce an egg cell-like gene expression program. Plant J 67(2):280–291

    Article  PubMed  CAS  Google Scholar 

  • Krajewski AJ, Rabe E (1995) Bud age affects sprouting and flowering in Clementine mandarin (Citrus reticulate Blanco). Hort Sci 30:1366–1368

    Google Scholar 

  • Krueger R, Navarro L (2007) Citrus germplasm resources. In: Khan IA (ed) Citrus genetics, breeding, and biotechnology. CABI, Oxfordshire, pp 45–140

    Chapter  Google Scholar 

  • Kulyan RV (2014) Assessment of the citrus gene pool in Russia humid subtropical climate to develop new mandarin cultivars. Ph.D. thesis, Kuban Agrarian University, Krasnodar

    Google Scholar 

  • Kunzel GL, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genet 154:397–412

    CAS  Google Scholar 

  • Latado RR, Cristofani-Yaly M, Carvalho CR, Machado MA (2007) Plantas autotetraplóides de citros sob tratamento in vitro com colchicine. Pesq Agropec Bras 42(10):1429–1435

    Article  Google Scholar 

  • Latado RR, Neto AT, Figueira A (2012) In vivo and in vitro mutation breeding of citrus. Induced mutagenesis in crop plants. Biorem Biodiv Bioavail 6:40–45

    Google Scholar 

  • Lee LS (1988) Citrus polyploidy. Origins and potential for cultivar improvement. Aust J Agri Res 39:735–747

    Article  Google Scholar 

  • Li DD, Shi W, Deng XX (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21:153–156

    Article  CAS  Google Scholar 

  • Li YZ, Cheng YJ, Yi HL, Deng XX (2006) Genetic diversity in mandarin landraces and wild mandarins from China based on nuclear and chloroplast simple sequence repeat markers. J Hort Sci Biotech 81(3):371–378

    Article  Google Scholar 

  • Liu GF, He SW, Li WB (1990) Two new species of citrus in China. Acta Bot Yunnanica 12:287–289

    Google Scholar 

  • Luro F, Lorieux M, Laigret F et al (1994) Genetic mapping of an intergeneric citrus hybrid using molecular markers. Fruits 49:404–408

    CAS  Google Scholar 

  • Luro F, Maddy F, Jacquemond C et al (2004) Identification and evaluation of diplogyny in clementine (Citrus clementina) for use in breeding. Acta Hort 663:841–847

    Article  Google Scholar 

  • Luro F, Costantino G, Terol J et al (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genom 287:1–13

    Google Scholar 

  • Luro F, Venturini N, Costantino G et al (2012) Genetic and chemical diversity of citron (Citrus medica L.) based on nuclear and cytoplasmic markers and leaf essential oil composition. Phytochem 77:186–196

    Article  CAS  Google Scholar 

  • Majd F, Jahangirzadeh E, Vedadi S et al (2009) Mutation induction for improving of tangerine in Iran. Induced mutation in tropical fruit trees. IAEA, Vienna, pp 41–46

    Google Scholar 

  • Malidzan S, Radulovic M, Lazovic B, Perovic T (2004) Derivation of early-ripening selection from a heterogenous clonal cultivar Kawano wase (Citrus unshiu Marc). In: Mohamed E (ed) 10th international congress, Agadir, Morocco

    Google Scholar 

  • Mallick M, Awasthi OP, Singh SK, Dubey AK (2016) Physiological and biochemical changes in pre-bearing mutants of Kinnow mandarin (C. nobilis Lour × C. deliciosa Tenora). Sci Hort 199:178–185

    Article  CAS  Google Scholar 

  • Marita JM, Rodriguez JM, Nienhuis J (2000) Development of an algorithm identifying maximally diverse core collections. Gene Res Crop Evol 47:515–526

    Article  Google Scholar 

  • Martinez-Fuentes A, Mesejo C, Reig C, Agusti M (2010) Timing of the inhibitory effect of fruit on return bloom of ‘Valencia’ sweet orange (Citrus sinensis L. Osbeck). Sci Food Agri 90:1936–1943

    CAS  Google Scholar 

  • Martinez-Godoy MA, Mauri N, Juarez J et al (2008) A genome-wide 20K citrus microarray for gene expression analysis. BMC Genom 9:318

    Article  CAS  Google Scholar 

  • McCollum TG, Hearn J (2013) US early pride. US Patent Application 12/931,765

    Google Scholar 

  • McKhann HI, Camilleri C, Bérard A (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, Himelblau E, Kim SY et al (2005) Integration of flowering signals in winter-annual Arabidopsis. Plant Phys 137:149–156

    Article  CAS  Google Scholar 

  • Moreira CD, Chase CD, Gmitter FG, Grosser JW (2000a) Inheritance of organelle genome in citrus somatic cybrids. Mol Breed 6:401–405

    Article  CAS  Google Scholar 

  • Moreira CD, Chase CD, Gmitter FG, Grosser JW (2000b) Transmission of organelle genome in citrus somatic hybrids. Plant Cell Tiss Org Cult 61:165–168

    Article  Google Scholar 

  • Moriguchi T, Hidaka T, Omura M (1996) Genotype and parental combination influence efficiency of cybrids induction in citrus by electrofusion. Hort Sci 31:275–278

    Google Scholar 

  • Munoz-Fambuena N, Mesejo C, González-Mas MC et al (2011) Fruit regulates seasonal expression of flowering genes in alternate-bearing ‘Moncada’ mandarin. Ann Bot 108:511–519

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munoz-Fambuena N, Mesejo C, González-Mas MC et al (2012b) Gibberellic acid reduces flowering intensity in sweet orange (Citrus sinensis L. Osbeck) by repressing CiFT gene expression. Plant Growth Reg https://doi.org/10.1007/s00344-012-9263-y

  • Muñoz-Fambuena N, Mesejo C, González-Mas MC et al (2012) Fruit load modulates flowering-related gene expression in buds of alternate-bearing ‘Moncada’mandarin. Ann Bot 110(6):1109–1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nadeem MA, Nawaz MA, Shahid MQ et al (2017) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotech Equip https://doi.org/10.1080/13102818.2017.1400401

  • Nakano M, Shimada T, Endo T et al (2012) Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus. Plant Sci 183:131–142

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Juárez J (2007) Shoot-tip grafting in vitro. Citrus genetics, breeding, and biotechnology. CABI, Oxfordshire, pp 353–364

    Google Scholar 

  • Navarro L, Ortiz J, Juárez J (1985) Aberrant citrus plants obtained by somatic embryogenesis of nucellus cultured in vitro. Hort Sci 20:214–215

    Google Scholar 

  • Navarro L, Aleza P, Cuenca J et al (2015) The mandarin triploid breeding program in Spain. Acta Hort 1065:389–395

    Article  Google Scholar 

  • Nicolosi E, Deng ZN, Gentile A et al (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Google Scholar 

  • Nishikawa FT, Endo T, Shimada H et al (2007) Increased CiFT abundance in the stem correlates with floral induction by low temperature in Satsuma mandarin (Citrus unshiu Marc.) J Exp Bot 58:3915–3927

    Google Scholar 

  • Nishikawa F, Endo T, Shimada T et al (2009) Differences in seasonal expression of flowering genes between deciduous trifoliate orange and evergreen Satsuma mandarin. Tree Phys 29(7):921–926

    Article  CAS  Google Scholar 

  • Notaguchi M, Abe M, Kimura T et al (2008) Long-distance, graft transmissible action of Arabidopsis FLOWERING LOCUS T protein to promote flowering. Plant Cell Phys 49:1645–1658

    Article  Google Scholar 

  • Oiyama I, Kobayashi S (1990) Polyembryony in undeveloped monoembryonic diploid seeds crossed with a citrus tetraploid. Hort Sci 25:1276–1277

    Google Scholar 

  • Oiyama I, Okudai N (1986) Production of colchicine-induced autotetraploid plants through micrografting in monoembryonic Citrus cultivars. Jpn J Breed 36:371–376

    Article  Google Scholar 

  • Ollitrault P, Dambier D, Luro F, Froelicher Y (2008a) Ploidy manipulation for breeding seedless triploid citrus. Plant Breed Rev 30:323–352

    Article  CAS  Google Scholar 

  • Ollitrault P, Lotfy S, Costantino G et al (2008b) International effort toward a SSR-based linkage map for C. clementina. In: Abstracts of 11th international citrus congress, Wuhan, China 8:159–160

    Google Scholar 

  • Ollitrault P, Terol J, Chen C et al (2012a) A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genom 13(1):593

    Article  CAS  Google Scholar 

  • Ollitrault P, Terol J, Garcia-Lor A et al (2012b) SNP mining in C. clementina BAC end sequences; transferability in the Citrus genus (Rutaceae), phylogenetic inferences and perspectives for genetic mapping. BMC Genom https://doi.org/10.1186/1471-2164-13-13

  • Omar AA, Murata MM, El-Shamy HA et al (2018) Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice. Transgen Res https://doi.org/10.1007/s11248-018-0065-2

  • Orbovic V, Shankar A, Peeples ME et al (2015) Citrus transformation using mature tissue explants. In: Wang K (ed) Agrobacterium protocols, vol 2. Springer, New York, pp 259–273

    Google Scholar 

  • Osborn TC, Pires JC, Birchler JA et al (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Gen 19:141–147

    Article  CAS  Google Scholar 

  • Oueslati A, Salhi-Hannachi A, Luro F et al (2017) Genotyping by sequencing reveals the interspecific C. maxima/C. reticulata admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos, orangelos and grapefruits. PLoS ONE 12(10):e0185618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal D, Malik SK, Kumar S et al (2013) Genetic variability and relationship studies of mandarin (Citrus reticulata Blanco) using morphological and molecular markers. Agri Res 2(3):236–245

    Google Scholar 

  • Park TH, Kim JB, Hutten RC et al (2007) Genetic positioning of centromeres using half-tetrad analysis in a 4x-2x cross population of potato. Genet 176:85–94

    Article  CAS  Google Scholar 

  • Pessoa-Filho M, Rangel P, Ferreira M (2010) Extracting samples of high diversity from thematic collections of large gene banks using a genetic-distance based approach. BMC Plant Biol 10:127

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pillitteri LJ, Lovatt CJ, Walling LL (2004a) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Phys 135:1540–1551

    Article  CAS  Google Scholar 

  • Pillitteri LJ, Lovatt CJ, Walling LL (2004b) Isolation and characterization of LEAFY and APETALA1 homologues from Citrus sinensis L. Osbeck ‘Washington’. J Am Soc Hort Sci 129:846–856

    CAS  Google Scholar 

  • Polat I, Turgutoglu E, Kurt S (2015) Determination of genomic diversity within mutant lemon (Citrus limon L.) and mandarin (Citrus reticulata) using molecular markers. Pak J Bot 47(3):1095–1102

    Google Scholar 

  • Qiu WM, Zhu AD, Wang Y et al (2012) Comparative transcript profiling of gene expression between seedless Ponkan mandarin and its seedy wild type during floral organ development by suppression subtractive hybridization and cDNA microarray. BMC Genom 13:397

    Article  CAS  Google Scholar 

  • Raga V, Bernet GP, Carbonell EA, Asins MJ (2012) Segregation and linkage analyses in two complex populations derived from the citrus rootstock Cleopatra mandarin. Inheritance of seed reproductive traits. Tree Genet Genomes 8:1061–1071

    Article  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploidy formation in flowering plants. Ann Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Reed BM, Engelmann F, Dulloo ME et al (2004) Technical guidelines for the management of field and in vitro germplasm collections. IPGRI handbooks for genebanks No. 7. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Rouiss H, Cuenca J, Navarro L et al (2017) Unreduced megagametophyte production in lemon occurs via three meiotic mechanisms, predominantly second-division restitution. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01211

  • Russo G (2004) Clementine ‘Angiulli’: an early ripening mutation of the clementine ‘Comune’. In: Mohamed E (ed) Abstract published in the 10th international congress Agadir, Morocco, 15–20 Feb 2004

    Google Scholar 

  • Saleh B, Allario T, Dambier D et al (2008) Tetraploid citrus rootstocks are more tolerant to salt stress than diploid. C R Biol 331(9):703–710

    Article  PubMed  Google Scholar 

  • Satpute AD, Chen C, Gmitter FG et al (2015) Cybridization of grapefruit with ‘Dancy’ mandarin leads to improved fruit characteristics. J Am Soc Hort Sci 140(5):427–435

    CAS  Google Scholar 

  • Saunt J (1990) Citrus varieties of the world. Sinclair, Norwich

    Google Scholar 

  • Savidan Y (2000) Apomixis genetics and breeding. Plant Breed Rev 18:13–85

    CAS  Google Scholar 

  • Seguì-Simarro JM (2010) Androgenesis revisited. Bot Rev 76:377–404

    Article  Google Scholar 

  • Semagn K, Bjørnstad A, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotech 5:2540–2568

    CAS  Google Scholar 

  • Shimizu T, Kitajima A, Nonaka K et al (2016) Hybrid origins of Citrus varieties inferred from DNA marker analysis of nuclear and organelle genomes. PLoS ONE 11(11):e0166969

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimizu T, Tanizawa Y, Mochizuki T et al (2017) Draft sequencing of the heterozygous diploid genome of Satsuma (Citrus unshiu Marc.) using a hybrid assembly approach. Front Genet https://doi.org/10.3389/fgene.2017.00180

  • Shiratake K, Suzuki M (2016) Omics studies of citrus, grape and rosaceae fruit trees. Breed Sci 66(1):122–138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Somsri S, Jompook P, Kanhom P et al (2009) Development of seedless fruits mutants in citrus including tangerine (C. reticulata) and pummelo (C. grandis) through induced mutations and biotechnology. In: Induced mutation in tropical fruit trees, IAEA, Vienna, Austria, pp 33–40

    Google Scholar 

  • Sonah H, Bastien M, Iquira E et al (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8(1):e54603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soriano L, Mourão Filho FAA, Camargo LEA, Mendes BMJ (2012) Regeneration and characterization of somatic hybrids combining sweet orange and mandarin/mandarin hybrid cultivars for citrus scion improvement. Plant Cell Tiss Org Cult 111(3):385–392

    Article  CAS  Google Scholar 

  • Southwick SM, Davenport TL (1986) Characterization of water stress and low temperature effects on flower induction in Citrus. Plant Phys 81:26–29

    Article  CAS  Google Scholar 

  • Spiegel-Roy P, Vardi A (1981) ‘Yafit’ and ‘Norit’ two new easy peeling mandarin hybrids. Proc Int Soc Citricult 1:57–59

    Google Scholar 

  • Spiegel-Roy P, Vardi A (1992) ‘Shani’,’Orah’and ‘Winola’: three new selections from our breeding program. In: Abstracts published in the 7th international citrus congress, Acireale, Italy, 8–13 Mar 1992

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London

    Google Scholar 

  • Strasburger E (1878) Ueber polyembryonie. Jenaisch. Z Naturwiss 12:647–670

    Google Scholar 

  • Strasburger E (1910) Sexuelle und apogame Fortpflanzung bei Urticaceen. Jahrb Wiss Bot 47:245–288

    Google Scholar 

  • Swingle WT, Reece PC (1967) The botany of citrus and its wild relatives. In: Reuther W, Webber HJ (eds) The citrus industry. California, Berkeley, pp 190–430

    Google Scholar 

  • Talón M, Gmitter FG (2008) Citrus genomics. Int J Plant Genom https://doi.org/10.1155/2008/528361

  • Tan FC, Swain SM (2007) Functional characterization of AP3, SOC1 and WUS homologues from citrus (Citrus sinensis). Phys Plant 131:481–495

    Article  CAS  Google Scholar 

  • Tanaka T (1977) Fundamental discussion of citrus classification. Studia Citrol 14:1–6

    Google Scholar 

  • Tavoletti S, Bingham ET, Yandell BS et al (1996) Half tetrad analysis in alfalfa using multiple restriction fragment length polymorphism markers. Proc Nat Acad Sci USA 93:10918–10922

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Terol JM, Naranjo A, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genom 9:423

    Article  CAS  Google Scholar 

  • Tisserat B, Murashige T (1977) Repression of asexual embryogenesis in vitro by some plant growth regulators. vitro 13:799–805

    Article  CAS  Google Scholar 

  • Tolkowsky S (1938) Hesperides: a history of the culture and use of citrus fruits. John Bale, Sons & Curnow, London

    Google Scholar 

  • Toolapong P, Komatsu H, Iwamasa M (1996) Triploids and haploid progenies derived from small seeds of ‘Banpeiyu’ pummelo, crossed with ‘Ruby Red’ grapefruit. Jpn Soc Hort Sci 65:255–260

    Article  Google Scholar 

  • Tripolitsiotis C, Nikoloudakis N, Linos A, Hagidimitriou M (2013) Molecular characterization and analysis of the Greek citrus germplasm. Not Bot Horti Agrobot Cluj-Napoca 41:463–471

    Article  Google Scholar 

  • Tusa N, Fatta Del Bosco S, Nigro F, Ippolito A (2000) Response of cybrids and a somatic hybrid of lemon to Phoma tracheiphila infections. Hort Sci 35(1):125–127

    Google Scholar 

  • Usman M, Ramzan M, Fatima B et al (2002) Citrus germplasm enhancement by interploid hybridization 1. Reciprocal crosses of Kinnow and Succari. Int J Agri Biol 4:208–210

    Google Scholar 

  • Usman M, Saeed T, Khan MM, Fatima B (2006) Occurrence of spontaneous polyploids in Citrus. Hort Sci (Prague) 33(3):124–129

    Article  Google Scholar 

  • Usman M, Fatima B, Gillani KA et al (2008) Exploitation of potential target tissues to develop polyploids in citrus. Pak J Bot 40(4):1755–1766

    CAS  Google Scholar 

  • Uzun A, Yesiloglu T, Aka-Kacar Y et al (2009) Genetic diversity and relationships within Citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci Hort (Amsterdam) 121:306–312

    Article  CAS  Google Scholar 

  • van Treuren R, Tchoudinova I, Soest LJM, Hintum TJL (2006) Marker-assisted acquisition and core collection formation: a case study in barley using AFLPs and pedigree data. Gene Res Crop Evol 53:43–52

    Article  Google Scholar 

  • Vardi A, Arzee-Gonen P, Frydman-Shani A et al (1989) Protoplast-fusion-mediated transfer of organelles from Microcitrus into citrus and regeneration of novel alloplasmic trees. Theor Appl Genet 78:741–747

    Article  PubMed  CAS  Google Scholar 

  • Vardi A, Levin I, Carmi N (2008) Induction of seedlessness in citrus: from classical techniques to emerging biotechnological approaches. J Am Soc Hort Sci 133:117–126

    Google Scholar 

  • Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better: new approaches for seedless fruit production. Trends Biotech 18:233–242

    Article  CAS  Google Scholar 

  • Volk GM, Waddell J, Bonnart R, Towill L et al (2008) High viability of dormant Malus buds after 10 years of storage in liquid nitrogen vapour. CryoLett 29:89–94

    CAS  Google Scholar 

  • Volk GM, Samarina LK, Kulyan R et al (2017a) Citrus genebank collections, International collaboration opportunities between the US and Russia. Genet Resour Crop Evol https://doi.org/10.1007/2107-017-0543-z

  • Volk GM, Bonnart R, Shepherd A, Yin Z et al (2017b) Citrus cryopreservation: viability of diverse taxa and histological observations. Plant Cell Tiss Organ Cult 128(2):327–334

    Article  CAS  Google Scholar 

  • Wakana A, Hanada N, Park S et al (2005) Production of tetraploid forms of acid citrus cultivars by top grafting of shoots with sprouting axially buds treated with colchicine. J Fac Agric Kyushu Univ 50(1):93–102

    Google Scholar 

  • Wang M, Bergen SV, Duijn BV (2000) Insights into a key developmental switch and its importance for efficient plant breeding. Plant Phys 124(2):523–530

    Article  CAS  Google Scholar 

  • Wang Z, Taramino G, Yang D et al (2001) Rice ESTs with disease-resistance gene or defense-response gene like sequences mapped to regions containing major resistance genes or QTLs. Mol Gen Genom 265:302–310

    Article  CAS  Google Scholar 

  • Wang JL, Tian L, Lee HS et al (2006) Genome wide non additive gene regulation in Arabidopsis allotetraploids. Genet 172:507–517

    Article  CAS  Google Scholar 

  • Wang L, Pan ZY, Guo WW (2010a) Proteomic analysis of leaves from a diploid cybrid produced by protoplast fusion between Satsuma mandarin and pummelo. Plant Cell Tiss Organ Cult 103(2):165–174

    Article  CAS  Google Scholar 

  • Wang Y, Li J, Xia R (2010b) Expression of chalcone synthase and chalcone isomerase genes and accumulation of corresponding flavonoids during fruit maturation of Guoqing No. 4 satsuma mandarin (Citrus unshiu Marcow). Sci Hort 125(2):110–116

    Article  CAS  Google Scholar 

  • Wang J, Jiang J, Wang Y (2013) Protoplast fusion for crop improvement and breeding in China. Plant Cell Tiss Organ Cult 112:131–142

    Article  Google Scholar 

  • Wang B, Wang R-R, Cui Z-H et al (2014) Potential applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotech Adv 32:583–595

    Article  CAS  Google Scholar 

  • Wang X, Xu Y, Zhang S et al (2017) Genomic analyses of primitive, wild and cultivated citrus provide insights into asexual reproduction. Nat Genet 49:765–772

    Article  PubMed  CAS  Google Scholar 

  • Wu JH, Mooney P (2002) Autotetraploid tangor plant regeneration from in vitro citrus somatic embryogenic callus treated with colchicines. Plant Cell Tiss Organ Cult 70:99–104

    Article  CAS  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J et al (2014) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotech 32:656–662

    Article  CAS  Google Scholar 

  • Wu GA, Terol J, Ibanez V et al (2018) Genomics of the origin and evolution of Citrus. Nature 554:311–316

    Article  CAS  PubMed  Google Scholar 

  • Wutscher HK (1979) Citrus rootstocks. In: Janick J (ed) Horticultural reviews, vol 1. AVI Publishing, Westport, pp 237–269

    Google Scholar 

  • Xiao SX, Biswas MK, Li MY et al (2014) Production and molecular characterization of diploid and tetraploid somatic cybrid plants between male sterile Satsuma mandarin and seedy sweet orange cultivars. Plant Cell Tiss Organ Cult 116(1):81–88

    Article  CAS  Google Scholar 

  • Xiaodong CAI, Jing FU, Wenwu GUO (2017) Mitochondrial genome of callus protoplast has a role in mesophyll protoplast regeneration in citrus: evidence from transgenic GFP somatic homo-fusion. Hort Plant J 3(5):177–182

    Article  Google Scholar 

  • Xu Q, Chen LL, Ruan X et al (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–63

    Article  CAS  PubMed  Google Scholar 

  • Yahata D, Matsumoto K, Ushijima K (2004) Relationship between flower bud differentiation and carbohydrate contents in spring shoots of very-early, early and late maturing cultivars of satsuma mandarin. J Jpn Soc Hort Sci 73:405–410

    Article  CAS  Google Scholar 

  • Yamamoto M, Okudai N, Matsumoto R (1992) Segregation for aborted in hybrid seedling using Citrus nobilis, C. deliciosa cv. Encore as the seed parent. J Jpn Soc Hort Sci 60:785–789

    Article  Google Scholar 

  • Yamamoto M, Matsumoto R, Okudai N, Yamada Y (1997) Aborted anthers of Citrus result from gene-cytoplasmic male sterility. Sci Hort 70(1):9–14

    Article  Google Scholar 

  • Yamamoto M, Tsuchimochi Y, Ninomiya T et al (2013) Diversity of chloroplast DNA in various mandarins (Citrus spp.) and other Citrus demonstrated by CAPS analysis. J Jpn Soc Hort Sci 82:106–113

    Article  CAS  Google Scholar 

  • Young RH, Albrigo LG, Cohen M, Castle WS (1982) Rates of blight incidence in trees on Carrizo citrange and other rootstocks. Proc Fla State Hort Soc 95:76–78

    Google Scholar 

  • Yu XH, Klejnot J, Lin CT (2006) Florigen: one found, more to follow? J Integr Plant Biol 48:617–621

    Article  CAS  Google Scholar 

  • Yu K, Xu Q, Da X et al (2012) Transcriptome changes during fruit development and ripening of sweet orange (Citrus sinensis). BMC Genom 13(1):10

    Article  CAS  Google Scholar 

  • Yu Y, Chen C, Gmitter FG (2016) QTL mapping of mandarin (Citrus reticulata) fruit characters using high-throughput SNP markers. Tree Genet Genom 12(4):77

    Article  Google Scholar 

  • Yu Y, Bai J, Chen C, Plotto A et al (2017) Identification of QTLs controlling aroma volatiles using a ‘Fortune’x ‘Murcott’ (Citrus reticulata) population. BMC Genom 18(1):646

    Article  Google Scholar 

  • Zhang S, Shi Q, Albrecht U et al (2017) Comparative transcriptome analysis during early fruit development between three seedy citrus genotypes and their seedless mutants. Hort Res 4:17041

    Google Scholar 

  • Zhang J, Zhang M, Deng X (2007) Obtaining autotetraploids in vitro at a high frequency in Citrus sinensis. Plant Cell Tiss Organ Cult 89:211–216

    Article  Google Scholar 

  • Zhang KP, Zhao L, Tian JC et al (2008) A genetic map constructed using a doubled haploid population derived from two elite Chinese common wheat varieties. J Integr Plant Biol 50(8):941–950

    Article  CAS  PubMed  Google Scholar 

  • Zheng BB, Wu XM, Ge XX et al (2012) Comparative transcript profiling of a male sterile cybrid pummelo and its fertile type revealed altered gene expression related to flower development. PLoS ONE 7(8):e43758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Leading research institutes and online resources involved in citrus breeding and biotechnology

Institutions

Country

Contact information and websites

Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University

China

http://www.hzau.edu.cn

+86 27 87286965

National Citrus Engineering Research Center, Southwest University Chonquing

+86-23-68349601

http://www.sicas.cn

Citrus Research Institute, Chinese Academy of Agricultural Sciences Chongqing

http://www.caas.cn/en

+861082106755

The French National Institute for Agricultural Research (INRA)

France

http://institut.inra.fr

+33(0)1 42 75 90 00

French Agricultural Research Centre for International Development (CIRAD)

www.cirad.fr

+33 1 53 70 20 00

USDA National Institute for Food and Agriculture (NIFA)

USA

www.citrusgenomedb.org

Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida

http://www.crec.ifas.ufl.edu

+1 863-956-1151

Citrus Research Center and Agricultural Experiment Station, College of Natural and Agricultural Sciences, University of California, Riverside

http://cnas.ucr.edu

+1 951 827-6555

Division of Citrus research , Institute of Fruit tree and Tea science NARO, Shimizu, Shizuoka

Japan

http://www.naro.affrc.go.jp

+81-54-369-7100

Center of Citriculture, Instituto Valenciano de Investigaciones Agrarias – IVIA, Valencia

Spain

http://www.ivia.gva.es

+34 963 42 40 00

Centro di Ricerca per l’Agrumicoltura e le colture mediterranee (Research Centre for Citrus and Mediterranean Crops), Catania

Italy

acm@crea.gov.it

+39-095-7653111

http://sito.entecra.it/portale/cra_dati_istituto.php

Citrus and Subtropical Fruit Research Institute

South

Africa

http://www.arc.agric.za/arc-itsc/Pages/Citrus .aspx

Indonesian Citrus and Subtropical Fruits Research Institute, Junrejo District, East Java

Indonesia

http://balitjestro.litbang.pertanian.go.id

(+62341) 592683

Central Citrus Research Institute, Nagpur

India

http://www.ccringp.org.in

0712-2500813

Citrus Genetic Resources Bank, Jeju National University, Jeju 690-756,

Korea

http://www.knrrc.or.kr/english/rrc/rrc.jsp?category=75&order=1#36

Directorate of Horticulture, Ayub Agriculture Research Institute, Faisalabad

Pakistan

+92-489239212

http://www.agripunjab.gov.pk/research

Institute of Horticultural Sciences, University of Agriculture, Faisalabad

+92-41-9200186

directorihs@uaf.edu.pk

Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad

+92-41-9201087

directorcabb@uaf.edu.pk

Center for Advanced Studies in Agriculture and Food Security (USPCAS-AFS), University of Agriculture, Faisalabad

+92-41-2409462-4

uspcasafs@uaf.edu.pk

Appendix 2

Genetic resources

Cultivars

Important traits

Cultivation location

Miyagawa

Large fruit than Owari, early maturity, highly acidic

Japan

Nankan No 4

Balanced flavor

Hayashi

Vigorous growth, high sugar content , most finest flavor

Aoshima

Smooth rind, long term storage , late maturity

Juman

High sugar level, prolonged storage

Hassaku

Leaves are pummelo like, fruit resemble Marsh grapefruit

Iyokan

Fruit have depressed area at stem end, sweet flavor without bitterness

Natsudaidi

Dark green leaves, large grapefruit size fruit , seedy, late maturing, bitter and highly acidic flavor

Kiyomi

Soft rind and tender texture , late maturity

Seminole

Cup-shaped leaves, fruit borne inside canopy, deep reddish orange color, late maturity, high acid content

Tankan

Large orange like leaves, medium-late maturing, rind have pebbly texture

South China, Japan

Okitsu

Early bearing, completely seedless , high sugar content than Miyagawa

Japan, Spain

Nules

Extended harvesting , multiple fruit setting

Spain

Esbal

Early bearing

Fina

Small fruit , high juice content

Guillermina

Reddish orange fruit color

Hernandina

Late maturity, incomplete color development

Arrufatina

Thorny, early bearing

Clausellina

Early maturity than Owari

Planellina

Early maturity than Clausellina, Juicy, thin rind and large fruit size

Fortune

Bear fruit inside canopy, late maturing

Fremont

Early maturity, reddish orange internal and external color, brittle rind

Spain, Turkey

Kara

Open habit, droop branches, rough rind, high acid content

Spain, Australia

Nova

Thorny, reddish orange rind, juicy fine flavor

Spain, Israel, USA

Wilking

Alternate bearer, firm fruits, seedless

Spain, Morocco

Pixie

Small and firm fruit , less juicy, mediocre quality

California, Arizona, USA

Fairchild

Thornless, dense foliage, early maturity, tight rind, tomato like aroma

Robinson

Early maturing, thornless, cold hardy, flattish fruit

Florida, USA

Orlando tangelo

Cup shape leaf , early maturity, difficult to peel, cold hardy

Temple

Cold sensitive, fairly thin rind, pulp color don’t match with rind, spicy flavor , self-fertile

Sunburst

Early maturing, smooth thin skin

USA

Minneola tangelo

Less cold resistant, large fruit , unique delicious and distinctive flavor

Dancy

Thornless, frost susceptible, well balanced flavor

Encore

Dark orange patches on fruit , distinctive rind oil aroma , highly seedy

USA, Japan

Honey Mandarin

Fruit borne on terminal, cold hardy, thin rind, higher juice and sugar content

USA, Brazil

Ellendale

Prone to crotch splitting, thin rind, long shelf life,

Australia, Argentina, Uruguay

Imperial

Early maturity

Australia

Malaquina

Rough rind texture , insipid flavor

Argentina

Malvasio

Seedy, late maturity

Palazzelli

Clementine like flavor , late maturity, good storage

Italy

Sun Red

Small fruit size, the highest level of anthocyanins (800 ppm), seedy

D2238

Fruit medium in size, pulp yellow to orange , low naringinin and furanocoumarins, TSS 10–12°Brix, seedless

Miho

More vigorous than Okitsu

South Africa

Ortanique

Late maturity, tough segment walls, outstanding juice color

Jamaica

Kinnow

Late maturity, smooth rind, seedy, high TSS, fruit size large

Pakistan, India

Kinnow LS

Late maturity, smooth rind, low seeded, high TSS, fruit size large

Pakistan

Feutrell’s Early

Early maturity, seedy, high TSS, good fruit quality , fruit size small to medium

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Usman, M., Fatima, B. (2018). Mandarin (Citrus reticulata Blanco) Breeding. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-91944-7_13

Download citation

Publish with us

Policies and ethics