Skip to main content

Apple (Malus spp.) Breeding: Present and Future

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Fruits

Abstract

Apple breeding has been extremely successful in providing a highly diverse fruit crop . Recent (>50 millions years ago) genome -wide duplication (GWD) resulted in the 17 chromosomes in the Pyreae and confirmed the origin of cultivated apple on Malus sieversii being the same species as M. × domestica. Malus, as many other species in the family Rosaceae , shows gametophytic self-incompatibility (GSI), which forces outcrossing. GSI at the pistil is regulated by extacellular ribonuclease , S-RNase, which is encoded by S locus. Growers and agronomists have provided multiple cultivars with different colors, shapes, resistances, climatic adaptation or industrial aptitudes . The aim in apple breeding was the combination of different kinds of resistance and good fruit quality to produce dessert cultivars and cultivars for processing . Some of the best of these cultivars display resistance to scab (Venturia inaequalis) , mildew (Podosphaera leucotricha) , fire blight (Erwinia amylovora) , bacterial canker (Pseudomonas syringae) , red spider mite (Panonychus ulmi) , winterfrost and good fruit quality . Different scab resistance sources of wild species (Vf, Vr, VA) were combined in the new series of cultivars . Multiple efforts worldwide have conserved most of that variation, the pillar for the traditional and new techniques profiting from the analysis of the apple genome , the genome-wide association studies (GWAS) , identifying SNPs and genes , the analysis of genes differentially expressed (GDE) identified by qRT-PCR and microarray analysis, and the recent molecular genetic tool CRISPR /Cas9 to edit and correct the genome .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bannier H-J (2011) Moderne Apfelzüchtung: Genetische Verarmung und Vitalitätsverluste erst bei Verzicht auf Fungizideinsatz sichtbar. Erwerbs-Obstbau 52:85–110

    Article  Google Scholar 

  • Baumgartner IO, Patocchi A, Frey JE et al (2015) Breeding elite lines of apple carrying pyramided homozygous resistance genes against apple scab and resistance against powdery mildew and fire blight. Plant Mol Biol Rep 121(3):647–656

    Google Scholar 

  • Baumgartner JO, Kellerhals M, Costa F et al (2016) Development of SNP-based assays for disease resistance and fruit quality traits in apple (Malus x domestica Borkh.) and validation in breeding pilot studies. Tree Genet Genom 12:35

    Google Scholar 

  • Benelli C, De Carlo A, Engelmann F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotech Adv 31:175–185

    Article  CAS  Google Scholar 

  • Benson EE (2008) Cryopreservation theory. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 15–32

    Chapter  Google Scholar 

  • Bhatti S, Jha G (2010) Current trends and future prospects of biotechnological interventions through tissue culture in apple. Plant Cell Rep 29:1215–1225. https://doi.org/10.1007/s00299-010-0907-8

    Article  PubMed  CAS  Google Scholar 

  • Broertjes C, Van Harten AM (1988) Applied mutation breeding for vegetatively propagated crops. Elsevier, Amsterdam

    Google Scholar 

  • Brown SK (1998) Genetics of apple. In: Janick J (ed) Plant breeding reviews, vol 9. Wiley-Interscience. Purdue University, USA, pp 333–366

    Google Scholar 

  • Brown SK, Maloney KE (2005) Malus x domestica apple. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI Publishing, Cambridge, pp 475–511

    Chapter  Google Scholar 

  • Büttner R, Fischer M, Forsline PL et al (2000a) Genebank work for preservation of the genetic diversity of apple. Acta Hort 538:39–42

    Article  Google Scholar 

  • Büttner R, Geibel M, Fischer C (2000b) The genetic potential of scab and mildew resistance in Malus wild species. Acta Hort 538:67–70

    Google Scholar 

  • Büttner R, Fischer M, Forsline PL et al (2004) Gene banks for preservation of wild apple genetic resources. J Fruit Ornam Plant Res 12:99–105

    Google Scholar 

  • Coart E, Van Glabeke S, De Loose M et al (2006) Chloroplast diversity in the genus Malus: new insights into the relationship between the European wild apple (Malus sylvestris (L.) Mill.) and the domesticated apple (Malus domestica Borkh.). Mol Ecol 15(8):2171–2182

    Article  CAS  PubMed  Google Scholar 

  • Cornille A, Giraud T, Smulders MJM et al (2014) The domestication and evolutionary ecology of apples. Trends Genet 30:57–65

    Article  CAS  PubMed  Google Scholar 

  • Dapena E (1996) Review of Spanish collections. In: Case HJ (ed.) European Malus germplasm. Proceedings, 21–24 June 1995, Wye College, University of London, IPGRI, p 42

    Google Scholar 

  • De Filippis LF (2014) Crop improvement through tissue culture. In: Ahmad P, Wani MR, Azooz MM, Tran LSP (eds.) Improvement of crops in the era of climatic changes, vol 1. Springer Science + Business Media New York, pp 289–346

    Google Scholar 

  • De Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, vol 3. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Deberegh PC, Zimmerman RH (2002) Micropropagation technology and application. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Dobránszki J, Teixeira da Silva JA (2010) Micropropagation of apple—a review. Biotech Adv 28:462–488

    Article  CAS  Google Scholar 

  • Dunemann F (2017) Neue Strategien zur Erzeugung haploider Kulturpflanzen durch Verfahren der Geneliminierung. Julius-Kühn-Archiv 30, im Druck. https://doi.org/10.5073/jka.2017.457.007

  • Einset J (1952) Spontaneous polyploidy in cultivated apples. Proc Am Soc Hort Sci 59:291–302

    Google Scholar 

  • Emeriewen O, Richter K, Kilian A et al (2014) Identification of a major quantitative trait locus for resistance to fire blight in the wild apple species Malus fusca. Mol Breed 34(2):407–419

    Article  CAS  Google Scholar 

  • Engelmann F (2012) Germplasm collection, storage and preservation. In: Altman A, Hazegawa PM (eds) Plant biotechnology and agriculture prospects for the 21st Century. Academic Press, Oxford, pp 255–268

    Chapter  Google Scholar 

  • FAO (1998) Statistic Series No. 148, Production yearbook 52. Rome Ferree DC, Carlson RF (1987) Apple rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit crops. Wiley-Interscience, New York, pp 107–143

    Google Scholar 

  • Feng CH, Cui ZH, Li BQ, Chen L, Ma YL, Zhao YH, Wang QC (2013) Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration. Plant Cell, Tissue and Organ Culture (PCTOC) 112(3):369–78

    Google Scholar 

  • Ferreira V, Ramos-Cabrer AM, Carnide V et al (2016) Genetic pool structure of local apple cultivars from Portugal assessed by microsatellites. Tree Genet Genom 12(36). https://doi.org/10.1007/s11295-016-0997-8

  • Fischer C (1999) Results in apple breeding at Dresden-Pillnitz. Erwerbsobstbau 41:65–74

    Google Scholar 

  • Fischer M (ed) (2010) Farbatlas Obstsorten, 3rd edn. Verlag E. Ulmer, Stuttgart, Germany

    Google Scholar 

  • Fischer M (2011) Obstzüchtung in der DDR - eine Erfolgsgeschichte. In: Rübensam, Wagemann: Erinnerung von Zeitzeugen an ihr Wirken in der Agrarwissenschaft der DDR. vanDerner Verlag, pp 139–157

    Google Scholar 

  • Fischer M, Dunemann F (2000) Search for polygenic scab and mildew resistance in apple varieties cultivated at the fruit Genebank Dresden-Pillnitz. Acta Hort 538:71–78

    Article  Google Scholar 

  • Fischer C, Fischer M (1996) Results in apple breeding at Dresden-Pillnitz—review. Gartenbauwiss 61:139–146

    Google Scholar 

  • Fischer M, Fischer C (2002) Pinova apple cultivar. Compact Fruit Tree 35(1):19–20

    Google Scholar 

  • Fischer M, Fischer C (2004) Genetic resources as basis for new resistant apple cultivars. J Fruit Ornam Plant Res, Poznan, 12 Special ed., pp 63–76

    Google Scholar 

  • Fischer M, Fischer C (2006) The Pillnitz re-series of apple cultivars: do they hold promise? Compact Fruit Tree 39(1):13–15

    Google Scholar 

  • Fischer M, Fischer C (2007) Die Zukunft: Resistente Apfelsorten. Vorträge Pflanzenzüchtung 72:165–170

    Google Scholar 

  • Fischer M, Fischer C (2008) Apfel, Malus domestica Borkh. Rundum gesund. In: Röbbelen G (Hrsg.): Entwicklung der Pflanzenzüchtung in Deutschland (1908–2008) - 100 Jahre GFP e.V. - eine Dokumentation. GFP Göttingen, pp 469–475

    Google Scholar 

  • Fischer C, Dierend W, Fischer M, Bier-Kamotzke A (2000) Stability of scab resistance in apple—new results, problems and chances of its durability (Stabilität der Schorfresistenz an Apfel—Neue Ergebnisse, Probleme und Chancen ihrer Erhaltung). Erwerbs-Obstbau 42:73–82

    Google Scholar 

  • Fischer M, Fischer C, Dierend W (2005) Evaluation of the stability of scab resistance in apple: a co-operation between gene bank curator, breeder and fruit grower. PGR Newslett 142:36–42

    Google Scholar 

  • Flachowsky H, Peil A, Hanke MV, Broggini G (2014) Erstes Feuerbrandresistenzgen isoliert. Obstbau 39(6):325–328

    Google Scholar 

  • Foroni I, Baptista C, Monteiro L et al (2012) The use of microsatellites to analyze relationships and to decipher homonyms and synonyms in Azorean apples (Malus × domestica Borkh.). Plant Syst Evol 298:1297–1313

    Article  Google Scholar 

  • Gasi F, Simon S, Pojskic N et al (2013) Evaluation of Apple (Malus x domestica) genetic resources in Bosnia and Herzegovina using microsatellite markers. HortSci 48(1):13–21

    Google Scholar 

  • Geibel M, Dehmer KJ, Forsline PL (2000) Biological diversity in Malus sieversii populations from Central Asia. Acta Hort 538:43–49

    Article  Google Scholar 

  • Germanà MA (2006) Double haploid production in fruit crops. Plant Cell Tiss Org 86:131–146. https://doi.org/10.1007/s11240-006-9088-0

    Article  Google Scholar 

  • Gharghani A, Zamani Z, Talaie A et al (2009) Genetic identity and relationships of Iranian apple (Malus× domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet Resour Crop Evol 56:829–842

    Article  CAS  Google Scholar 

  • Gross BL, Henk AD, Richards CM et al (2014) Genetic diversity in Malus × domestica (Rosaceae) through time in response to domestication. Am J Bot 101(10):1770–1779

    Google Scholar 

  • Guitton B, Kelner JJ, Celton JM et al (2016) Analysis of transcripts differentially expressed between fruited and deflowered ‘Gala’ adult trees: a contribution to biennial bearing understanding in apple. BMC Plant Biol 16:55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann W (2015) Farbatlas Alte Obstsorten, 5th edn. Verlag E, Ulmer Stuttgart

    Google Scholar 

  • Hatton RG (1954) Paradise apple stocks. J Pom Hort Sci 13:293–350

    Google Scholar 

  • Höfer M (2004) In vitro androgenesis in apple improvement of the induction phase. Plant Cell Rep 22:365–370. https://doi.org/10.1007/s00299-003-0701-y

    Article  PubMed  CAS  Google Scholar 

  • Höfer M (2005) Regeneration of androgenic embryos in apple (Malus x domestica Borkh.) via anther and microspore culture. Acta Phys Plant 27:709–716

    Article  Google Scholar 

  • Holefors A (1999) Genetic transformation of the apple rootstock M26 with genes influencing growth properties. Acta Univer Agricul Sueciae Agraria 158:53

    Google Scholar 

  • Hurt A (1916) Theophrastus enquiry into plants. Publishing house William Heinemann, London

    Google Scholar 

  • IPGRI (1996) European Malus germplasm. In: Case HJ (ed.) Proceedings of a Workshop, 21–24 June 1995. Wye College, University of London

    Google Scholar 

  • Itoiz R, Royo B (2003) Isoenzymatic variability in an apple germplasm bank. Genet Resour Crop Evol 50:391–400

    Article  CAS  Google Scholar 

  • Jacobsen E, Schouten HJ (2008) Cisgenesis, a new tool for traditional plant breeding, should be exempted from the regulation on genetically modified organisms in a step by step approach. Potato Res 51:75–78

    Article  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding. New York, pp 1–76

    Google Scholar 

  • Janssen BJ, Thodey K, Schaffer RJ et al (2008) Global gene expression analysis of apple fruit development from the floral bud to ripe fruit. BMC Plant Biol 8:16. https://doi.org/10.1186/1471-2229-8-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jonas E, de Koning DJ (2013) Does genomic selection have a future in plant breeding? Trends Biotech 31(9):497–504

    Article  CAS  Google Scholar 

  • Juniper BE, Watkins R, Harris SA (1999) The origin of the apple. Acta Hort 484:27–33

    Google Scholar 

  • Kellerhals M, Gessler C (1995) Apfelzüchtung vor neuen Herausforderungen. Agrarforschung 2(2):61–64

    Google Scholar 

  • Kellerhals M, Székely T, Sauer C et al (2009) Pyramidisieren von Schorfresistenzen in der Apfelzüchtung. Erwerbs-Obstbau 51:21–28

    Article  Google Scholar 

  • Ko K, Brown SK, Norelli JL, Aldwinckle HS (1998) Alterations in nptII and gus expression following micropropagation of transgenic M7 apple rootstock lines. J Am Soc Hort Sci 123:11–18

    CAS  Google Scholar 

  • Koller B, Gessler C, Bertschinger L, Kellerhals M (1995) Technikfolgen des Einsatzes gentechnisch veränderter krankheitsresistenter Nutzpflanzen - Teil Apfel. Fachstudie Technikfolgen Apfel, Eidgenössische Forschungsanstalt für Obst-, Wein- und Gartenbau Wädenswil, Zürich

    Google Scholar 

  • Krens FA, Schaart JG, van der Burgh AM et al (2015) Cisgenic apple trees; development, characterization, and performance. Front Plant Sci 6:286. https://doi.org/10.3389/fpls.2015.00286

    Article  PubMed  PubMed Central  Google Scholar 

  • Lambardi M, De Carlo A (2003) Application of tissue culture to the germplasm conservation of temperate broad-leaf trees. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer Ac Pub, Dordrecht, pp 815–840

    Chapter  Google Scholar 

  • Lambert C, Tepfer D (1992) Use of Agrobacterium rhizogenes to create transgenic apple trees having an altered organogenic response to hormones. Theor Appl Genet 85:105–109

    Article  CAS  PubMed  Google Scholar 

  • Lassois L, Denancé C, Ravon E et al (2016) Genetic diversity, population structure, parentage analysis, and construction of core collections in the French apple germplasm based on SSR markers. Plant Mol Biol Rep 34:827

    Article  CAS  Google Scholar 

  • Leforestier D, Ravon E, Muranty H et al (2015) Genomic basis of the differences between cider and dessert apple varieties. Evol Appl 8:650–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lespinasse Y (2001) D.A.R.E. Newsletter No. 4, INRA, Angers

    Google Scholar 

  • Li SB, OuYang WZ, Hou XJ et al (2015) Genome-wide identification, isolation and expression analysis of auxin response factor (ARF) gene family in sweet orange (Citrus sinensis). Front Plant Sci 6:119. https://doi.org/10.3389/fpls.2015.00119

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang W, Dondini L, De Franceschi P et al (2015) Genetic diversity, population structure and construction of a core collection of apple cultivars from Italian germplasm. Plant Mol Biol Rep 33:458–473

    Article  CAS  Google Scholar 

  • Lizarraga A, Fraga M, Ascasibar J, Gonzalez ML (2017) In vitro propagation and recovery of eight apple and two pear cultivars held in a germplasm bank. Am J Plant Sci 8:2238–2254. https://doi.org/10.4236/ajps.2017.89150

    Article  Google Scholar 

  • Maggioni L, Janes R, Hayes A et al (1997) Report of a working group on Malus/Pyrus. First meeting, 15–17 May. Dublin, Ireland. IPGRI, Roma

    Google Scholar 

  • Magyar-Tabori K, Dobranszki J, Teixeira da Silva A et al (2010) The role of cytokinins in shoot organogenesis in apple. Plant Cell Tiss Org 101:251–267. https://doi.org/10.1007/s11240-010-9696-6

    Article  CAS  Google Scholar 

  • Masseron A (1989) Les porte-greffe pommier, poirier et nashi. CTIFL, Paris

    Google Scholar 

  • Morgan J, Richards A (1993) The book of apples. Ebury Press, London

    Google Scholar 

  • Nishitani C, Hirai N, Komori S et al (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6:31481. https://doi.org/10.1038/srep31481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Noiton DAM, Alspach PA (1996) Founding clones, inbreeding, coancestry, and status number of modern apple cultivars. J Am Soc Hort Sci 121:773–782

    Google Scholar 

  • Norelli JL, Aldwinckle HS (1993) The role of aminoglycoside antibiotics in the regeneration and selection of neomycin phosphotransferase transgenic apple tissue. J Am Soc Hort Sci 118:311–316

    CAS  Google Scholar 

  • Norelli JL, Aldwinckle HS, Destéfano-Beltrán L, Jaynes JM (1994) Transgenic ‘Malling 26’ apple expressing the attacin E gene has increased resistance to Erwinia amylovora. Euphy 77:123–128

    Article  CAS  Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Phys 5:389–400

    Article  CAS  Google Scholar 

  • Panis B, Lambardi M (2006) Status of cryopreservation technologies in plants (crops and forest trees). In: Ruane J, Sonnino A (eds) The role of biotechnology in exploring and protecting agricultural genetic resources. FAO, Rome, pp 61–78

    Google Scholar 

  • Paprstein F, Sedlak J, Polak J et al (2008) Results of in vitro thermotherapy of apple cultivars. Plant Cell Tiss Org 94:347–352. https://doi.org/10.1007/s11240-008-9342-8

    Article  Google Scholar 

  • Paul H, Daigny G, Sangwan-Norreel BS (2000) Cryopreservation of apple (Malus x domestica Borkh.) shoot tips following encapsulation-dehydration or encapsulation-vitrification. Plant Cell Rep 19:768–774

    Article  CAS  Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Ascasíbar-Errasti J, Piñeiro-Andión J (2003) Analysis of apple germplasm in Northwestern Spain. J Am Soc Hort Sci 128(1):67–84

    Google Scholar 

  • Pereira-Lorenzo S, Ramos-Cabrer AM, Díaz-Hernández MB (2007) Evaluation of genetic identity and variation of local apple cultivars (Malus×domestica Borkh.) from Spain using microsatellite markers. Genet Resour Crop Evol 54:405–420

    Article  CAS  Google Scholar 

  • Pereira-Lorenzo S, Urrestarazu J, Ramos-Cabrer AM et al (2017) Analysis of the genetic diversity and structure of the Spanish apple genetic resources suggests the existence of an Iberian genepool. Ann Appl Biol 171(3):424–440

    Article  Google Scholar 

  • Petzold H (1990) Apfelsorten, 4th edn. Publishing House Neumann, Radebeul

    Google Scholar 

  • Pina A, Urrestarazu J, Errea P (2014) Analysis of the genetic diversity of local apple cultivars from mountainous areas from Aragon (Northeastern Spain). Sci Hort 174:1–9

    Article  Google Scholar 

  • Radchuk VV, Korkhovoy V (2005) The rolB gene promotes rooting in vitro and increases fresh root weight in vivo of transformed apple scion cultivar ‘Fiorina’. Plant Cell Tiss Org 81:203–212

    Article  CAS  Google Scholar 

  • Rai MK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Org 116:1–15. https://doi.org/10.1007/s11240-013-0389-9

    Article  CAS  Google Scholar 

  • Ramos-Cabrer AM, Díaz-Hernández MB, Pereira-Lorenzo S (2007) Morphology and microsatellites in Spanish apple collections. J Hort Sci Biotech 82:257–265

    Article  CAS  Google Scholar 

  • Reed B (2008) Plant cryopreservation: a practical guide. Springer Science, New York

    Book  Google Scholar 

  • Ru S, Main D, Evans K, Peace C (2015) Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genet Genom 11:8. https://doi.org/10.1007/s11295-015-0834-5

    Article  Google Scholar 

  • Rueß F (2016) Resistente und robuste Obstsorten. E. Ulmer, Stuttgart, Taschenatlas, Verl

    Google Scholar 

  • Sarmiento FM (1986) Catálogo de voces vulgares y enespecial de voces gallegas de diferentes vegetales. In: Pensado JL (ed) Ediciones Universidad Salamanca, Salamanca

    Google Scholar 

  • Sarwar M, Skirvin RM (1997) Effect of thidiazuron and 6-benzylaminopurine on adventitious shoot regeneration from leaves of three strains of ‘Mcintosh’ Apple (Malus x domestica Borkh.) in vitro. Sci Hort 68:95–100. https://doi.org/10.1016/S0304-4238(96)00971-5

    Article  CAS  Google Scholar 

  • Sassa H, Kakui H, Minamikawa M (2010) Pollen-expressed F-box gene family and mechanism of S-RNase-based gametophytic self-incompatibility (GSI) in Rosaceae. Sex Plant Reprod 23:39–43

    Article  CAS  PubMed  Google Scholar 

  • Sattler I, Bannier HJ (2016) Umfassende Vitalität statt monogener Schorfresistenz. Öko-Obstbau 2:26–28

    Google Scholar 

  • Scorza R, Callahan A, Dardick C et al (2013) Genetic engineering of Plum pox virus resistance: ‘HoneySweet’ plum—from concept to product. Plant Cell Tiss Org 115:1–12

    Article  CAS  Google Scholar 

  • Sedira M, Holefors A, Walender M (2001) Protocol for transformation of the apple rootstock Jork 9 with the rolB gene and its influence on rooting. Plant Cell Rep 20:517–524

    Article  CAS  Google Scholar 

  • Sedlak J, Paprstein F (2016) In vitro establishment and proliferation of apple cultivars. Acta Hort 1113:107–112

    Article  Google Scholar 

  • Spiegel-Roy P (1990) Economic and agricultural impact of mutation breeding in fruit trees. Mut Breed Rev 5:1–26

    Google Scholar 

  • Stehr R (2000) Eignungsprüfung und Marktchancen neuer schorfresistenter Apfelsorten im Alten Land. Dissertation, Humboldt University Berlin, Mitt. OVR

    Google Scholar 

  • Towill LE, Forsline PL, Walters C et al (2004) Cryopreservation of Malus germplasm using a winter vegetative bud method: results from 1915 accessions. Cryo-Lett 25:323–334

    Google Scholar 

  • Tripathi S, Suzuki J, Gonsalves D (2007) Development of genetically engineered resistant papaya for papaya ringspot virus in a timely manner. In: Ronald PC (ed) Plant-pathogen interactions. Methods in molecular biology, vol 354. Humana Press, Totowa, New Jersey, pp 197–240

    Google Scholar 

  • Tubbs FR (1973) Research fields in the interaction of rootstocks and scions in woody perennials. Hort Abst 43(247–253):325–335

    Google Scholar 

  • Urrestarazu J, Miranda C, Santesteban LG, Royo JB (2012) Genetic diversity and structure of local apple cultivars from Northeastern Spain assessed by microsatellite markers. Tree Genet Genomes 8:1163–1180

    Article  Google Scholar 

  • Urrestarazu J, Denancé C, Ravon E et al (2016) Analysis of the genetic diversity and structure across a wide range of germplasm reveals prominent gene flow in apple at the European level. BMC Plant Biol 16:130. https://doi.org/10.1186/s12870-016-0818-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Harten AM (1998) Mutation breeding: theory and practical applications. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Van Treuren R, Kemp H, Ernsting G et al (2010) Microsatellite genotyping of apple (Malus × domestica Borkh.) genetic resources in the Netherlands: application in collection management and variety identification. Genet Resour Crop Evol 57:853–865

    Article  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J et al (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42(10):833–839

    Article  CAS  PubMed  Google Scholar 

  • Way RD, Aldwinckle HS, Lamb RC et al (1991) Apples (Malus). Acta Hort 290:3–46

    Article  Google Scholar 

  • Webster AD, Wertheim SJ (2003) Apple rootstocks. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CABI, New York, pp 91–124

    Chapter  Google Scholar 

  • Wertheim SJ (1998) Apple rootstocks. In: Wertheim SJ (ed) Rootstock Guide. Fruit Res Stat, Wilhelminadorp, pp 19–60

    Google Scholar 

  • Wu Y, Engelmann F, Zhao Y et al (1999) Cryopreservation of apple shoot tips: importance of cryopreservation technique and of conditioning of donor plants. Cryo Lett 20:121–130

    Google Scholar 

  • Xu J, Wang Y, Zhang Y, Chai TY (2008) Rapid in vitro multiplication and ex vitro rooting of Malus zumi (Matsumura) Rehd. Acta Phys Plant 30:129–132. https://doi.org/10.1007/s11738-007-0075-9

    Article  CAS  Google Scholar 

  • Yamane H, Tao R (2009) Molecular basis of self-(in)compatibility and current status of S-genotyping in rosaceous fruit trees. J Japan Soc Hort Sci 78:137–157

    Article  CAS  Google Scholar 

  • Yepes LM, Aldwinckle SH (1994) Micropropagation of thirteen Malus cultivars and rootstocks, and effect of antibiotics on proliferation. Plant Grow Regul 15:55–67. https://doi.org/10.1007/BF00024677

    Article  CAS  Google Scholar 

  • Zhu LH, Holefors A, Ahlman A et al (2001) Transformation of the apple rootstock M. 9/29 with the rolB gene and its influence on rooting and growth. Plant Sci 160:433–439

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman RH (1991) Micropropagation of temperate zone fruit and nut crops. In: Debergh PC, Zimmerman RH (eds) Micropropagation. Kluwer Academic Publishers, Dordrecht, pp 231–246

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Pereira-Lorenzo .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Research Institutes and Online Resources

Julius-Kühn-Institut für Züchtungsforschung an Obst. D01326 Dresden-Pillnitz, Pillnitzer Platz 3a, Germany

https://www.julius-kuehn.de/dresden-pillnitz/

https://www.bundessortenamt.de

Appendix 2: Genetic Resources

www.deutsche-genbank-obst.de

https://www.julius-kuehn.de/zo/obstsorten-des-jki/

https://www.genres.de/kultur-und-wildpflanzen/erhaltung/deutsche-genbank-obst

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pereira-Lorenzo, S., Fischer, M., Ramos-Cabrer, A.M., Castro, I. (2018). Apple (Malus spp.) Breeding: Present and Future. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-91944-7_1

Download citation

Publish with us

Policies and ethics