Language Aptitude in Relation to Handedness, Hemispheric Dominance, Cognitive Learning Strategies and Non-verbal IQ: A Combined Quantitative and Qualitative Study

  • Klara KagerEmail author
Part of the English Language Education book series (ELED, volume 16)


Individuals vary greatly in their aptitude for language, a phenomenon especially visible in the diverging degree of proficiency present in second language learners. This study uses a combined quantitative and qualitative approach to test individual differences in language aptitude. It explores the impact of handedness and hemispheric brain dominance on language performance by testing participants’ cognitive flexibility in verbal and non-verbal domains. The test battery, consisting of the fifth part of the Modern Language Aptitude Test (MLAT), part F of the LLAMA language aptitude test, and Raven’s Progressive Matrices, was administered to 16 right- and 16 left-handed native German speakers (n = 32) studying art, languages, or natural sciences. These tests serve to evaluate the participants’ aptitude for vocabulary learning, grammatical inferencing, and abstract reasoning. Additionally, two (non-validated) complementary questionnaires enquired about the participants’ preference for either verbal or non-verbal games. The results confirm that handedness does not have any traceable influence on language aptitude, and the groups of art students, language students, and science students did not produce significantly different results. Correlations between scores on the language and reasoning tests indicate that verbal and non-verbal abilities draw on similar mental resources. An additional finding shows that participants opting for non-verbal games scored significantly higher on the language tests than participants who preferred verbal games. These findings lead to the conclusion that handedness and hemispheric dominance have no measurable effect on language performance. Results further suggest that good visuospatial skills can present a considerable advantage in second language learning.


  1. Adams, E. A. (1952). Analysis of raven’s matrices scores: Preliminary report. Surrey, UK: Surrey Educational Research Association.Google Scholar
  2. Armour, J., Davison, A., & McManus, I. C. (2014). Genome-wide association study of handedness excludes simple genetic models. Heredity (Edinb.), 112(3), 221–225. CrossRefGoogle Scholar
  3. Beimer, N. J., Buchtel, H. A., & Glynn, S. M. (2015). One centre’s experience with complications during the Wada test. Epilepsia, 56(8), 110–113. CrossRefGoogle Scholar
  4. Bernat, E., & Lloy, R. (2007). Exploring the gender effect on EFL learners’ beliefs about language learning. Australian Journal of Educational & Developmental Psychology, 7, 79–91. CrossRefGoogle Scholar
  5. Biedrón, A., & Pawlak, M. (2016). New conceptualizations of linguistic giftedness. Language Teaching, 49(2), 151–185. CrossRefGoogle Scholar
  6. Binder, J. R. (2011). Functional MRI is a valid non-invasive alternative to wada testing. Epilepsy & Behaviour, 20(2), 214–222. CrossRefGoogle Scholar
  7. Boyle, J. P. (1987). Sex differences in listening vocabulary. Language Learning, 37(2), 273–284.CrossRefGoogle Scholar
  8. Briscoe, J., Chilvers, R., Baldeweg, T., & Skuse, D. (2012). A specific cognitive deficit within semantic cognition across a multi-generation family. Proceedings of the Royal Society B, 279(1742), 3652–3661. CrossRefGoogle Scholar
  9. Carroll, J. (1981). Twenty-five years of research in foreign language aptitude. In K. C. Diller (Ed.), Individual differences and universals in language learning aptitude (pp. 83–118). Rowley, MA: Newbury House.Google Scholar
  10. Carroll, J. B., & Stanley, M. (1959). Modern language aptitude test (MLAT). San Antonio, TX: Psychological Corporation.Google Scholar
  11. Christiner, M., & Reiterer, S. M. (2015). A Mozart is not a Pavarotti: Singers outperform instrumentalists on foreign accent imitation. Frontiers in Human Neuroscience, 9, 482. CrossRefGoogle Scholar
  12. Corballis, M. C. (2014). Left brain, right brain: Facts and fantasies. PLoS Biology, 12(1). CrossRefGoogle Scholar
  13. Corey, D., Hurley, M., & Foundas, A. (2001). Right and left handedness defined: A multivariate approach using hand preference and hand performance measures. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 14(3), 144–152.Google Scholar
  14. Dediu, D. (2008). The role of genetic biases in shaping the correlations between languages and genes. Journal of Theoretical Biology, 254(2). CrossRefGoogle Scholar
  15. Dehaene-Lambertz, G., Dahaene, S., & Hertz-Pannier, L. (2002). Functional neuroimaging of speech perception in infants. Science, 298(5600), 2013–2015. CrossRefGoogle Scholar
  16. DeKeyser, R. (2012). Interaction between individual differences, treatment, and structures in SLA. A Journal of Research in Language Studies, 62(2), 189–200. CrossRefGoogle Scholar
  17. Dörnyei, Z., & Skehan, P. (2003). Individual differences in second language learning. In C. J. Doughty & M. H. Long (Eds.), The handbook of second language acquisition (pp. 589–630). Oxford, UK: Blackwell.CrossRefGoogle Scholar
  18. Dorsaint-Pierre, R., Penhune, V. B., Watkins, K. E., Neelin, P., Lercch, J., Bouffard, M., & Zatorre, R. J. (2006). Asymmetries of the planum temporale and Heschl’s gyrus: Relationship to language lateralization. Brain, 129, 1164–1176. CrossRefGoogle Scholar
  19. Dronkers, N. F., Plaisant, O., Iba-Zizen, M. T., & Cabanis, E. A. (2007). Paul Broca’s historic case: High resolution MR imaging of the brains of Leborgne and Lelong. A Journal of Neurology, 130, 1432–1441. CrossRefGoogle Scholar
  20. Dweck, C. S. (2006). Mindset: The new psychology of success. New York: Random House.Google Scholar
  21. Golestani, N. (2012). Brain structural correlates of individual differences at low to high-levels of the language processing hierarchy: A review of new approaches to imaging research. International Journal of Bilingualism, 18(1), 6–34. CrossRefGoogle Scholar
  22. Golestani, N., Paus, T., & Zatorre, R. J. (2002). Anatomical correlates of learning novel speech sounds. Neuron, 35, 997–1010. CrossRefGoogle Scholar
  23. Goodwin, R. S., & Michel, G. F. (1981). Head orientation position during birth and in infant neonatal period, and hand preference at nineteen weeks. Child Development, 52(3), 819–826.CrossRefGoogle Scholar
  24. Groen, M. A., Whitehouse, A. J., Badcock, N. A., & Bishop, D. V. (2013). Associations between handedness and cerebral lateralization for language: A comparison of three measures in children. PLoS One, 8(5), e64876. CrossRefGoogle Scholar
  25. Hepper, P. G., Shahidullah, S., & White, R. (1991). Handedness in the human foetus. Neuropsychologia, 29, 1101–1111.CrossRefGoogle Scholar
  26. Johnston, D., Nicholls, M., Shah, M., & Shields, M. (2009). Nature’s experiment? Handedness and early childhood development. Demography, 46(2), 281–301. CrossRefGoogle Scholar
  27. Knecht, S., Dräger, B., Deppe, M., Bobe, L., Lohmann, H., Flöel, A., & Henningsen, H. (2000). Handedness and hemispheric language dominance in healthy humans. Brain: A Journal of Neurology, 123(12), 2512–2518.CrossRefGoogle Scholar
  28. Kratzmeier, H., & Horn, R. (1980). Manual: Raven-Matrices test. Advanced progressive matrices. Weinheim, Germany: Beltz Test.Google Scholar
  29. Language Learning and Testing Foundation. (2014). Modern language aptitude test. -aptitude-tests/modern-language-aptitude-test-2/. Accessed 13 May 2016.
  30. Long, M. (1990). Maturational constraints on language development. Studies in Second Language Acquisition, 12, 251–285.CrossRefGoogle Scholar
  31. Meara, P. (2005). LLAMA language aptitude tests the manual. Swansea, UK: Lognostics.Google Scholar
  32. Mercer, S. (2012). Dispelling the myth of the natural-born linguist. ELT Journal, 66(1), 22–29. CrossRefGoogle Scholar
  33. Papadatou-Pastou, M. (2011). Handedness and language laterization: Why are we right-handed and left-brained? Hellenic Journal of Psychology, 8, 248–265.Google Scholar
  34. Pelletier, I., Sauerwein, H. C., Lepore, F., Saint-Amour, D., & Lassonde, M. (2007). Non-invasive alternatives to the Wada test in the presurgical evaluation of language and memory functions in epilepsy patients. Epileptic Disorders, 9(2), 111–126. CrossRefGoogle Scholar
  35. Propper, R. E., O’Donnell, L. J., Whalen, S., Tie, Y., Norton, I. H., Suarez, R., & Golby, A. J. (2010). A combined fMRI and DTI examination of functional language lateralization and arcuate fasciculus structure: Effects of degree versus direction of hand preference. Brain and Cognition, 73(2), 85–92. CrossRefGoogle Scholar
  36. Pujol, J., Deus, J., Losilla, J. M., & Capdevilla, A. (1999). Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology, 52(5), 1038–1043.CrossRefGoogle Scholar
  37. Raven, J. (2000). The Raven’s progressive matrices: Change and stability over culture and time. Cognitive Psychology, 41(1), 1–48.CrossRefGoogle Scholar
  38. Raven, J. C. (1941). Standardisation of progressive matrices, 1938. British Journal of Medical Psychology, 19(1), 137–150.CrossRefGoogle Scholar
  39. Reiterer, S. M. (2009). Brain and language talent: A synopsis. In G. Dogil & S. M. Reiterer (Eds.), Language talent and brain activity (pp. 155–192). Berlin, Germany: Mouton de Gruyter.Google Scholar
  40. Robinson, P. (2007). Aptitude, abilities, contexts, practices. In R. DeKyser (Ed.), Practice in a second language: Perspectives from applied linguistics and cognitive psychology (pp. 256–286). New York: Cambridge University Press.CrossRefGoogle Scholar
  41. Saville-Troike, M. (2006). Introducing second language acquisition. Cambridge, UK: Cambridge University Press.Google Scholar
  42. Scerri, T. S., Brandler, W. M., Paracchini, S., Moris, A. P., & Ring, S. M. (2011). PCSK6 is associated with handedness in individuals with dyslexia. Human Molecular Genetics, 20(3), 608–614. CrossRefGoogle Scholar
  43. Skehan, P. (1998). A cognitive approach to language learning. Oxford, UK: Oxford University Press.Google Scholar
  44. Sparks, R., & Ganschow, L. (2001). Aptitude for learning a foreign language. Annual Review of Applied Linguistics, 21, 90–111. CrossRefGoogle Scholar
  45. Sternberg, R. (2002). The theory of successful intelligence and its implications for language aptitude testing. In P. Robinson (Ed.), Individual differences and instructed language learning (pp. 13–44). Amsterdam: Benjamins.CrossRefGoogle Scholar
  46. Szaflarski, J., Holland, S. K., Schmithorst, V. J., & Byars, A. W. (2006). An fMRI study of language laterization in children and adults. Human Brain Mapping, 27(3), 202–212. CrossRefGoogle Scholar
  47. Whitehouse, A. J., & Bishop, D. (2009). Hemispheric division of function is the result of independent probabilistic biases. Neuropsychologia, 47(8–9), 1938–1943. CrossRefGoogle Scholar
  48. Willems, R. M., Toni, I., Hagoort, P., & Casasanto, D. (2009). Body-specific motor imagery of hand actions: Neural evidence from right- and left-handers. Frontiers in Human Neuroscience, 3(39).
  49. Witkin, H. (1962). Psychological differentiation. New York: Wiley.Google Scholar
  50. Xiang, H., Dediu, D., Roberts, L., Norris, D., & Hagoort, P. (2012). The structural connectivity underpinning language aptitude, working memory, and IQ in the perisylvian language network. Language Learning, 62(2), 110–130. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of LinguisticsUniversity of ViennaViennaAustria

Personalised recommendations