Advertisement

The Neuroanatomical Correlates of Foreign Language Aptitude

  • Sabrina Turker
  • Susanne M. Reiterer
  • Peter Schneider
  • Annemarie Seither-Preisler
Chapter
Part of the English Language Education book series (ELED, volume 16)

Abstract

In this chapter language aptitude will be looked at from a neuroscientific perspective and it will be discussed to which extent foreign language aptitude, i.e., foreign language learning potential or ability, is influenced by brain morphology, working memory and musical ability. The first part hence serves as a theoretical introduction and brief narrative review on past research, whereas the second part deals with a study on the role of the morphology of auditory cortex in German-speaking individuals with high and low language aptitude. In this study, MRI scans of German monolingual native speakers (N = 30; aged: 20–40 years) were analyzed and the auditory cortices of the participants with particularly high and those with particularly low language aptitude were compared. On the behavioral level, significant correlations could be found between speech imitation aptitude, English pronunciation skills, musicality and language aptitude as measured by the Modern Language Aptitude Test (MLAT). Especially the number of instruments played and working memory capacity showed significant correlations with aptitude measures. Moreover, it became clear that adults with very high language aptitude scores had more complete posterior duplications of Heschl’s gyrus in the right hemisphere and thus a differently developed primary auditory cortex. The results are in accordance with what research has previously shown in musically gifted children and could reignite the discussion of the importance of right-hemispheric brain areas for language processing.

References

  1. Abdul-Kareem, I. A., & Sluming, V. (2008). Heschl gyrus and its included primary auditory cortex: Structural MRI studies in healthy and diseased subjects. Journal of Magnetic Resonance Imaging, 28(2), 287–299.CrossRefGoogle Scholar
  2. Abrahamsson, N., & Hyltenstam, K. (2008). The robustness of aptitude effects in near-native second language acquisition. Studies in Second Language Acquisition, 30(4), 481–509.  https://doi.org/10.1017/S027226310808073X CrossRefGoogle Scholar
  3. Al-Shabatat, A. M. (2013). A review of the contemporary concepts of giftedness and talent. International Interdisciplinary Journal of Education, 2(12), 1336–1346.  https://doi.org/10.12816/0002983 CrossRefGoogle Scholar
  4. Artieda, G., & Muñoz, C. (2016). The LLAMA tests and the underlying structure of language aptitude at two levels of foreign language proficiency. Learning and Individual Differences, 50, 42–48.CrossRefGoogle Scholar
  5. Atkins, P. W., & Baddeley, A. D. (1998). Working memory and distributed vocabulary learning. Applied Psycholinguistics, 19(4), 537–552.CrossRefGoogle Scholar
  6. Baddeley, A. (2003a). Working memory: Looking back and looking forward. Nature Reviews Neuroscience, 4(10), 829–839.  https://doi.org/10.1038/nrn1201 CrossRefGoogle Scholar
  7. Baddeley, A. (2003b). Working memory and language: An overview. Journal of Communication Disorders, 36(3), 189–208.  https://doi.org/10.1016/S0021-9924(03)00019-4 CrossRefGoogle Scholar
  8. Baddeley, A. (2017). Modularity, working memory and language acquisition. Second Language Research, 33(33), 299–311.  https://doi.org/10.1177/0267658317709852 CrossRefGoogle Scholar
  9. Baddeley, A., Gathercole, S., & Papagno, C. (1998). The phonological loop as a language learning device. Psychological Review, 105(1), 158–173.  https://doi.org/10.1037//0033-295X.105.1.158 CrossRefGoogle Scholar
  10. Baddeley, A. D., & Hitch, G. J. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–90.CrossRefGoogle Scholar
  11. Baddeley, A. D., & Hitch, G. J. (2000). Development of working memory: Should the Pascual-Leone and the Baddeley and Hitch models be merged? Journal of Experimental Child Psychology, 77(2), 128–137.  https://doi.org/10.1006/jecp.2000.2592 CrossRefGoogle Scholar
  12. Bear, M. F., Connors, B. W., & Paradiso, M. A. (Eds.). (2007). Neuroscience. Exploring the brain. Baltimore: Williams & Wilkins.Google Scholar
  13. Benner, J., Reinhardt, J., Schneider, P., Stippich, C., Wengenroth, M., & Blatow, M. (2017). Prevalence and function of Heschl’s gyrus morphotypes in musicians. Brain Structure and Function, 222(8), 3587–3360.  https://doi.org/10.1007/s00429-017-1419-x CrossRefGoogle Scholar
  14. Berken, J. A., Gracco, V. L., Chen, J. K., Watkins, K. E., Baum, S., Callahan, M., & Klein, D. (2015). Neural activation in speech production and reading aloud in native and non-native languages. NeuroImage, 112, 208–217.CrossRefGoogle Scholar
  15. Besson, M., & Schön, D. (2001). Comparison between Language and Music. Annals of the New York Academy of Sciences, 232–258.  https://doi.org/10.1111/j.1749-6632.2001.tb05736.x CrossRefGoogle Scholar
  16. Biedroń, A. (2011a). Personality factors as predictors of foreign language aptitude. Studies in Second Language Learning and Teaching, 1(1231), 467–489.CrossRefGoogle Scholar
  17. Biedroń, A. (2011b). Intelligence in gifted L2 learners. In M. Pawlak (Ed.), Second language learning and teaching (pp. 129–142). Berlin, Germany: Springer.Google Scholar
  18. Biedroń, A. (2012). Memory abilities in gifted foreign language learners. In M. Pawlak (Ed.), New perspectives on individual differences in language learning and teaching (pp. 77–96). Berlin, Germany: Springer.CrossRefGoogle Scholar
  19. Biedroń, A. (2015). Neurology of foreign language aptitude. Studies in Second Language Learning and Teaching, 5(1), 13–40.  https://doi.org/10.14746/ssllt.2015.5.1.2 CrossRefGoogle Scholar
  20. Biedroń, A., & Pawlak, M. (2016a). New conceptualizations of linguistic giftedness. Language Teaching, 49(2), 151–185.  https://doi.org/10.1017/S0261444815000439 CrossRefGoogle Scholar
  21. Biedroń, A., & Pawlak, M. (2016b). The interface between research on individual difference variables and teaching practice: The case of cognitive factors and personality. Studies in Second Language Learning and Teaching, 6(3).  https://doi.org/10.14746/ssllt.2016.6.3.3
  22. Botting, N., & Conti-Ramsden, G. (2001). Non-word repetition and language development in children with specific language impairment (SLI). International Journal of Language & Communication Disorders, 36(4), 421–432.CrossRefGoogle Scholar
  23. Brown, H. D. (2006). Principles of language learning and teaching. White Plains, NY: Pearson Education.Google Scholar
  24. Carroll, J. B. (1958). A factor analysis of two foreign language aptitude batteries. Journal of General Psychology, 59, 3–19.CrossRefGoogle Scholar
  25. Carroll, J. B. (1962). The prediction of success in intensive foreign language training. In R. Glaser (Ed.), Training research and education (pp. 87–136). New York: Wiley.Google Scholar
  26. Carroll, J. B. (1973). Implications of aptitude test research and psycholinguistic theory for foreign language teaching. Linguistics, 11(111), 5–14.Google Scholar
  27. Carroll, J. B. (1990). Cognitive abilities in foreign language aptitude. In T. S. Parry & C. W. Stansfield (Eds.), Language aptitude reconsidered (pp. 11–30). Englewood Cliffs, NJ: Prentice Hall.Google Scholar
  28. Carroll, J. B., & Sapon, S. (1957). Modern language aptitude test. Bethesda, MD: Second Language Testing.Google Scholar
  29. Chan, E., Skehan, P., & Gong, G. (2011). Working memory, phonemic coding ability and foreign language aptitude: Potential for construction of specific language aptitude tests–the case of Cantonese. Ilha do Desterro: A Journal of English Language, Literatures in English and Cultural Studies, 60, 45–69.Google Scholar
  30. Chi, J. G., Dooling, E. C., & Gilles, F. H. (1977). Gyral development of the human brain. Annals of Neurology, 1, 86–93.  https://doi.org/10.1002/ana.410010109 CrossRefGoogle Scholar
  31. Christiner, M., & Reiterer, S. M. (2013). Song and speech: Examining the link between singing talent and speech imitation ability. Frontiers in Psychology, 4.  https://doi.org/10.3389/fpsyg.2013.00874
  32. Coady, J. A., & Evans, J. L. (2008). Uses and interpretations of non-word repetition tasks in children with and without specific language impairments (SLI). International Journal of Language & Communication Disorders, 43(1), 1–40.CrossRefGoogle Scholar
  33. Dogil, G., & Reiterer, S. M. (2009). Talent and brain activity. Berlin, Germany: Mouton de Gruyter.CrossRefGoogle Scholar
  34. Dolman, M., & Spring, R. (2014). To what extent does musical aptitude influence foreign language pronunciation skills? A multi-factorial analysis of Japanese learners of English. World Journal of English Language, 4(4), 1–11.  https://doi.org/10.5430/wjel.v4n4p1 CrossRefGoogle Scholar
  35. Dörnyei, Z. (1998). Motivation in second and foreign language learning. Language Teaching, 31(3), 117.  https://doi.org/10.1017/S026144480001315X CrossRefGoogle Scholar
  36. Dörnyei, Z. (2006). Individual differences in second language acquisition. AILA Review, 19(1), 42–68.Google Scholar
  37. Dörnyei, Z., & Ryan, S. (2015). The psychology of the language learner revisited. London: Routledge.CrossRefGoogle Scholar
  38. Dörnyei, Z., & Skehan, P. (2003). Individual differences in second language learning. In M. Long & C. J. Doughty (Eds.), The handbook of second language acquisition (pp. 589–630). Oxford, UK: Blackwell.CrossRefGoogle Scholar
  39. Ellis, N. C., & Sinclair, S. G. (1996). Working memory in the acquisition of vocabulary and syntax: Putting language in good order. The Quarterly Journal of Experimental Psychology, 49(1), 234–250.CrossRefGoogle Scholar
  40. Fonseca-Mora, C., Toscano-Fuentes, C., & Wermke, K. (2011). Melodies that help: The relation between language aptitude and musical intelligence. Anglistik International Journal of English Studies, 22(1), 101–118.Google Scholar
  41. Gagné, F. (1995). From giftedness to talent: A developmental model and its impact on the language of the field. Roeper Review, 18(2), 103–111.CrossRefGoogle Scholar
  42. Gagné, F. (2002). A differentiated model of giftedness and talent (DMGT) (Update). Retrieved from http://www.curriculumsupport.education.nsw.gov.au/policies/gats/assets/pdf/poldmgt2002rtcl.pdf.
  43. Gagné, F. (2005). From gifts to talents. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (pp. 98–119). New York: Cambridge University Press.CrossRefGoogle Scholar
  44. Ganschow, L., & Sparks, R. (1995). Effects of direct instruction in Spanish phonology on the native-language skills and foreign-language aptitude of at-risk foreign-language learners. Journal of Learning Disabilities, 28(2), 107–120.CrossRefGoogle Scholar
  45. Gathercole, S. E., & Baddeley, A. D. (1990). The role of phonological memory in vocabulary acquisition: A study of young children learning new names. British Journal of Psychology, 8(4), 439–454.CrossRefGoogle Scholar
  46. Gathercole, S. E., Service E, Hitch, G. J., Adams, A. M., & Martin, A. J. (1999). Phonological short-term memory and vocabulary development: Further evidence on the nature of the relationship. Applied Cognitive Psychology, 13(1), 65–77.CrossRefGoogle Scholar
  47. Golestani, N., Molko, N., Dehaene, S., LeBihan, D., & Pallier, C. (2007). Brain structure predicts the learning of foreign speech sounds. Cerebral Cortex, 17(3), 575–582.  https://doi.org/10.1093/cercor/bhk001 CrossRefGoogle Scholar
  48. Golestani, N., & Pallier, C. (2006). Anatomical correlates of foreign speech sound production. Cerebral Cortex, 17(4), 929–934.CrossRefGoogle Scholar
  49. Golestani, N., Paus, T., & Zatorre, R. J. (2002). Anatomical correlates of learning novel speech sounds. Neuron, 35(5), 997–1010.CrossRefGoogle Scholar
  50. Golestani, N., Price, C. J., & Scott, S. K. (2011). Born with an ear for dialects? Structural plasticity in the expert phonetician brain. Journal of Neuroscience, 31(11), 4213–4220.  https://doi.org/10.1523/JNEUROSCI.3891-10.2011 CrossRefGoogle Scholar
  51. Golestani, N., & Zatorre, R. J. (2009). Individual differences in the acquisition of second language phonology. Brain and Language, 109(2), 55–67.CrossRefGoogle Scholar
  52. Gordon, E. E. (1980). The assessment of music aptitudes of very young children. The Gifted Child Quarterly, 24(3), 107–111.CrossRefGoogle Scholar
  53. Gordon, E. E. (2001). Music aptitude and related tests. Chicago: GIA Publications.Google Scholar
  54. Granena, G., & Long, M. (Eds.). (2013). Sensitive periods, language aptitude, and ultimate L2 attainment. Amsterdam: John Benjamins.Google Scholar
  55. Hackett, T. A. (2009). The evolution of the primate and human auditory system. In J. H. Haas (Ed.), Evolutionary neuroscience (pp. 893–905). Oxford, UK: Academic.Google Scholar
  56. Hackett, T. A. (2015). Anatomic organization of the auditory cortex. Handbook of Clinical Neurology, 129, 27–53.  https://doi.org/10.1016/B978-0-444-62630-1.00002-0 CrossRefGoogle Scholar
  57. Hu, X., Ackermann, H., Martin, J. A., Erb, M., Winkler, S., & Reiterer, S. M. (2013). Language aptitude for pronunciation in advanced second language (L2) learners: Behavioral predictors and neural substrates. Brain and Language, 127(3), 366–376.CrossRefGoogle Scholar
  58. Hulshoff, H. E., Schnack, H. G., Posthuma, D., Mandl, R. C. W., Baaré, W. F., van Oel, C., & Kahn, R. S. (2006). Genetic contributions to human brain morphology and intelligence. The Journal of Neuroscience, 26(40), 10235–10242.  https://doi.org/10.1523/JNEUROSCI.1312-06.2006 CrossRefGoogle Scholar
  59. Jilka, M. (2009). Talent and proficiency in language. In G. Dogil & S. M. Reiterer (Eds.), Language talent and brain activity (pp. 1–16). Berlin, Germany: Mouton de Gruyter.Google Scholar
  60. Kemmerer, D. (2015). Cognitive neuroscience of language. New York: Psychology Press.Google Scholar
  61. Kepinska, O. (2017). The neurobiology of individual differences in grammar learning. Dissertation. Leiden: University of Leiden.Google Scholar
  62. Kepinska, O., de Rover, M., Caspers, J., & Schiller, N. O. (2017a). On neural correlates of individual differences in novel grammar learning: An fMRI study. Neuropsychologia, 98, 156–168.CrossRefGoogle Scholar
  63. Kepinska, O., de Rover, M., Caspers, J., & Schiller, N. O. (2017b). Whole-brain functional connectivity during acquisition of novel grammar: Distinct functional networks de-pend on language learning abilities. Behavioural Brain Research, 320, 333–346.CrossRefGoogle Scholar
  64. Klein, E. C. (1995). Second versus third language acquisition: Is there a difference? Language Learning, 45(3), 419–466.CrossRefGoogle Scholar
  65. Koelsch, S. (2005). Neural substrates of processing syntax and semantics in music. Current Opinion in Neurobiology, 15(2), 207–212.CrossRefGoogle Scholar
  66. Kormos, J., & Sáfár, A. (2008). Phonological short-term memory, working memory and foreign language performance in intensive language learning. Bilingualism: Language and Cognition, 11(2), 261–271.  https://doi.org/10.1017/S1366728908003416 CrossRefGoogle Scholar
  67. Kraus, N., & Chandrasekaran, B. (2010). Music training for the development of auditory skills. Nature Reviews. Neuroscience, 11(8), 599–605.  https://doi.org/10.1038/nrn2882 CrossRefGoogle Scholar
  68. Leroy, F., Cai, Q., Bogart, S. L., Dubois, J., Coulon, O., & Monzalvo, K. (2015). New human-specific brain landmark: The depth asymmetry of superior temporal sulcus. Proceedings of the National Academy of Sciences of the United States of America, 112, 1208.  https://doi.org/10.1073/pnas.1412389112 CrossRefGoogle Scholar
  69. Li, S. (2015). The associations between language aptitude and second language grammar acquisition: A meta-analytic review of five decades of research. Applied Linguistics, 36(3).  https://doi.org/10.1093/applin/amu054 CrossRefGoogle Scholar
  70. Li, S. (2016). The construct validity of language aptitude. Studies in Second Language Acquisition, 38(4).  https://doi.org/10.1017/S027226311500042X CrossRefGoogle Scholar
  71. Linck, J. A., Hughes, M. M., Campbell, S., Silbert, N. H., Tare, M., Jackson, S. R., & Doughty, C. J. (2013). Hi-LAB: A new measure of aptitude for high-level language proficiency. Language Learning, 63(3), 530–566.  https://doi.org/10.1111/lang.12011 CrossRefGoogle Scholar
  72. Meara, P. (2005). LLAMA language aptitude tests: The manual. Swansea, UK: Lognostics.Google Scholar
  73. Milovanov, R. (2009). The connectivity of musical aptitude and foreign language learning skills: Neural and behavioural evidence. Anglicana Turkuensia, 27(27), 1–56.Google Scholar
  74. Milovanov, R., Huotilainen, M., Esquef, P. A. A., Välimäki, V., Alku, P., & Tervaniemi, M. (2009). The role of musical aptitude and language skills in preattentive duration determination in school-aged children. Neuroscience Letters, 460, 161–165.CrossRefGoogle Scholar
  75. Milovanov, R., Huotilainen, M., Velimäki, V., Esquef, P. A. A., & Tervaniemi, M. (2008). Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence. Brain Research, 1194, 81–89.CrossRefGoogle Scholar
  76. Milovanov, R., Pietilä, P., Tervaniemi, M., & Esquef, P. A. A. (2010). Foreign language pronunciation skills and musical aptitude: A study of Finnish adults with higher education. Learning and Individual Differences, 20, 56–60.CrossRefGoogle Scholar
  77. Milovanov, R., & Tervaniemi, M. (2011). The interplay between musical and linguistic aptitudes: A review. Frontiers in Psychology, 2.  https://doi.org/10.3389/fpsyg.2011.00321
  78. Miyake, A., & Friedman, N. P. (1998). Individual differences in second language proficiency: Working memory as language aptitude. In Foreign language learning: Psycholinguistic studies on training and retention (pp. 339–364).Google Scholar
  79. Moreno, S., & Bidelman, G. M. (2014). Examining neural plasticity and cognitive benefit through the unique lens of musical training. Hearing Research, 308, 84–97.  https://doi.org/10.1016/j.heares.2013.09.012 CrossRefGoogle Scholar
  80. Nardo, D., & Reiterer, S. M. (2009). Musicality and phonetic language aptitude. In G. Dogil & S. M. Reiterer (Eds.), Language talent and brain activity (pp. 213–256). Berlin, Germany: Mouton de Gruyter.Google Scholar
  81. Neubauer, A. C., & Fink, A. (2009). Intelligence and neural efficiency: Measures of brain activation versus measures of functional connectivity in the brain. Intelligence, 37(2), 223–229.CrossRefGoogle Scholar
  82. Patel, D. (2011). Why would musical training benefit the neural encoding of speech? The OPERA hypothesis. Frontiers in Psychology, 2(142).  https://doi.org/10.3389/fpsyg.2011.00142
  83. Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191(1), 62–88.CrossRefGoogle Scholar
  84. Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816–847.CrossRefGoogle Scholar
  85. Purves, D., Augustine, G. J., Fitzpatrick, D., Katz, L. C., LaMantia, A. S., McNamara, J. O., & Williams, S. M. (2001). Neuroscience. Sunderland, MA: Sinauer Associates.Google Scholar
  86. Reiterer, S. M., Berger, M. L., Hemmelmann, C., & Rappelsberger, P. (2005). Decreased EEG coherence between prefrontal electrodes: A correlate of high language proficiency? Experimental Brain Research, 163, 109–113.CrossRefGoogle Scholar
  87. Reiterer, S. M., Hu, X., Erb, M., Rota, G., Nardo, D., Grodd, W., et al. (2011). Individual differences in audio-vocal speech imitation aptitude in late bilinguals: Functional neuro-imaging and brain morphology. Frontiers in Psychology, 2(271).  https://doi.org/10.3389/fpsyg.2011.00271
  88. Richardson, F. M., & Price, C. J. (2009). Structural MRI studies of language function in the undamaged brain. Brain Structure and Function, 213(6), 511–523.CrossRefGoogle Scholar
  89. Robinson, P. (2002). Effects of individual differences in intelligence, aptitude, and working memory on adult incidental SLA: A replication and extension of Reber, Walkenfield and Hernstad (1991). In P. Robinson (Ed.), Individual differences and instructed language learning (pp. 211–265). Amsterdam: John Benjamins.CrossRefGoogle Scholar
  90. Robinson, P. (2005). Aptitude and second language acquisition. Annual Review of Applied Linguistics, 25, 46–73.CrossRefGoogle Scholar
  91. Robinson, P. (2012). Individual differences, aptitude complexes, SLA processes, and aptitude test development. In New perspectives on individual differences in language learning and teaching (pp. 57–75). Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  92. Rogers, V. E., Meara, P., Aspinall, R., Fallon, L., Goss, T., Keey, E., & Thomas, R. (2016). Testing aptitude. EUROSLA Yearbook, 16(1), 179–210.CrossRefGoogle Scholar
  93. Rota, G., & Reiterer, S. M. (2009). Cognitive aspects of pronunciation talent: How empathy, mental flexibility, working memory and intelligence interact with phonetic talent. In G. Dogil & S. M. Reiterer (Eds.), Language talent and brain activity (pp. 67–96). Berlin, Germany: Mouton de Gruyter.Google Scholar
  94. Sáfár, A., & Kormos, J. (2008). Revisiting problems with foreign language aptitude. IRAL – International Review of Applied Linguistics in Language Teaching, 46(2).  https://doi.org/10.1515/IRAL.2008.005
  95. Sawyer, M., & Ranta, L. (2001). Aptitude, individual differences, and instructional design. In P. Robinson (Ed.), Cognition and second language instruction (pp. 319–353). Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  96. Schneider, P., Andermann, M., Wengenroth, M., Goebel, R., Flor, H., Rupp, A., & Diesch, E. (2009). Reduced volume of Heschl’s gyrus in tinnitus. NeuroImage, 45, 927–939.CrossRefGoogle Scholar
  97. Schneider, P., Scherg, M., Dosch, H. G., Specht, H. J., Gutschalk, A., & Rupp, A. (2002). Morphology of Heschl’s gyrus reflects enhanced activation in the auditory cortex of musicians. Nature Neuroscience, 5(7), 688–694.CrossRefGoogle Scholar
  98. Schneider, P., Sluming, V., Roberts, N., Bleeck, S., & Rupp, A. (2005). Structural, functional, and perceptual differences in Heschl’s gyrus and musical instrument preference. Annals of the New York Academy of Sciences, 1060(1), 387–394.  https://doi.org/10.1196/annals.1360.033 CrossRefGoogle Scholar
  99. Schneiderman, E. I., & Desmarais, C. (1988a). The talented language learner: Some preliminary findings. Second Language Research, 4(2), 91–109.  https://doi.org/10.1177/026765838800400201 CrossRefGoogle Scholar
  100. Schneiderman, E. I., & Desmarais, C. (1988b). A neuropsychological substrate for talent in second-language acquisition. In L. K. Obler & D. Fein (Eds.), The exceptional brain. Neuropsychology of talent and special abilities (pp. 103–126). New York: The Guilford Press.Google Scholar
  101. Schumann, J. H. (2004). The neurobiology of aptitude. In J. Schumann et al. (Eds.), The neurobiology of learning: Perspectives from second language acquisition (pp. 7–22). Mahwah, NJ: Erlbaum.Google Scholar
  102. Seither-Preisler, A., Parncutt, R., & Schneider, P. (2014). Size and synchronization of auditory cortex promotes musical, literacy, and attentional skills in children. The Journal of Neuroscience, 34, 10937–10949.  https://doi.org/10.1523/JNEUROSCI.5315-13.2014 CrossRefGoogle Scholar
  103. Serrallach, B., Gross, C., Bernhofs, V., Engelmann, D., Benner, J., Gündert, N., & Seither-Preisler, A. (2016). Neural biomarkers for dyslexia, ADHD and ADD in the auditory cortex of children. Frontiers in Neuroscience, 10, 324.  https://doi.org/10.3389/FNINS.2016.00324 CrossRefGoogle Scholar
  104. Singleton, D. (2017). Language aptitude: Desirable trait or acquirable attribute? Studies in Second Language Learning and Teaching, 7(1), 89–103.  https://doi.org/10.14746/ssllt.2017.7.1.5 CrossRefGoogle Scholar
  105. Skehan, P. (1986). Where does language aptitude come from? In P. M. Meara (Ed.), Spoken language (pp. 95–113). London: Centre for Information and Language Teaching: British Asso-ciation of Applied Linguistics.Google Scholar
  106. Skehan, P. (2002). Theorising and updating aptitude. In P. Robinson (Ed.), Individual differences and instructed language learning (pp. 69–95). Amsterdam: John Benjamins.CrossRefGoogle Scholar
  107. Slevc, L. R., & Miyake, A. (2006). Individual differences in second-language proficiency: Does musical ability matter? Psychological Science, 17(8), 675–681.CrossRefGoogle Scholar
  108. Sparks, R., & Ganschow, L. (2001). Aptitude for learning a foreign language. Annual Review of Applied Linguistics, 21, 90–111.CrossRefGoogle Scholar
  109. Sparks, R. L., Humbach, N., Patton, J. O. N., & Ganschow, L. (2011). Subcomponents of second-language aptitude and second-language proficiency. The Modern Language Journal, 95(2), 253–273.CrossRefGoogle Scholar
  110. Spolsky, B. (1995). Prognostication and language aptitude testing, 1925-62. Language Testing, 12(3), 321–340.CrossRefGoogle Scholar
  111. Stansfield, C. W., & Reed, D. J. (2004). The story behind the Modern Language Aptitude Test: An interview with John B. Carroll (1916–2003). Language Assessment Quarterly: An International Journal, 1(1), 43–56.CrossRefGoogle Scholar
  112. Stern, E., & Neubauer, A. (2013). Lernen macht intelligent: Warum Begabung gefördert werden muss. München, Germany: DVA.Google Scholar
  113. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: An approach to cerebral imaging. New York: Thieme.Google Scholar
  114. Thompson, A. S. (2013). The interface of language aptitude and multilingualism: Reconsidering the bilingual/multilingual dichotomy. The Modern Language Journal, 97(3), 685–701.CrossRefGoogle Scholar
  115. Van den Noort, M. W., Bosch, P., & Hugdahl, K. (2006). Foreign language proficiency and working memory capacity. European Psychologist, 11(4), 289–296.CrossRefGoogle Scholar
  116. Vangehuchten, L., Verhoeven, V., & Thys, P. (2015). Pronunciation proficiency and musical aptitude in Spanish as a foreign language: Results of an experimental research project. Revista de Lingüística y Lenguas Aplicadas, 10(1), 90–100.  https://doi.org/10.4995/rlyla.2015.3372 CrossRefGoogle Scholar
  117. Warrier, C., Wong, P., Penhune, V., Zatorre, R., Parrish, T., & Kraus, N. (2012). Relating structure to function: Heschl’s Gyrus and acoustic processing. Journal of Neuroscience, 29(1), 61–69.  https://doi.org/10.1523/JNEUROSCI.3489-08.2009 CrossRefGoogle Scholar
  118. Wen, Z. (2012). Foreign language aptitude. ELT Journal, 66(2), 233–235.  https://doi.org/10.1093/elt/ccr068 CrossRefGoogle Scholar
  119. Wen, Z. (2016). Working memory and second language learning: Towards an integrated approach. Bristol, UK: Multilingual Matters.CrossRefGoogle Scholar
  120. Wen, Z., & Skehan, P. (2011). A new perspective on foreign language aptitude research: Building and supporting a case for “working memory as language aptitude”. Ilha do Desterro: A Journal of English Language, Literatures in English and Cultural Studies, 60(60).  https://doi.org/10.5007/2175-8026.2011n60p015
  121. Wen, Z., Skehan, P., & Biedroń, A. (2017). Foreign language aptitude theory: Yesterday, today and tomorrow. Language Teaching, 50(1), 1–31.CrossRefGoogle Scholar
  122. Winke, P. (2013). An investigation into second language aptitude for advanced Chinese language learning. The Modern Language Journal, 97(1), 109–130.CrossRefGoogle Scholar
  123. Wong, P. C. M., Perrachione, T. K., & Parish, T. B. (2007). Neural characteristics of successful and less successful speech and word learning in adults. Human Brain Mapping, 28, 995–1006.CrossRefGoogle Scholar
  124. Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Science, 6(1), 37–46.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sabrina Turker
    • 1
  • Susanne M. Reiterer
    • 1
  • Peter Schneider
    • 2
  • Annemarie Seither-Preisler
    • 3
  1. 1.Department of Linguistics and Centre for Teacher Education, Unit for Language Learning and Teaching ResearchUniversity of ViennaVienna, WienAustria
  2. 2.Department of Neurology, Division of Neuroradiology and Section of BiomagnetismUniversity of HeidelbergHeidelbergGermany
  3. 3.Centre for Systematic MusicologyKarl-Franzens University Graz & BioTechMedGrazAustria

Personalised recommendations