Learning Gait Parameters for Locomotion in Virtual Reality Systems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10188)

Abstract

Mechanical repositioning is a locomotion technique that uses a mechanical device (i.e. locomotion interface), such as treadmills and pedaling devices, to cancel the displacement of a user for walking on the spot. This technique is especially useful for virtual reality (VR) systems that use large-scale projective displays for visualization. In this paper, we present a machine learning approach for developing a mechanical repositioning technique based on a 1-D treadmill for interacting with a unique new large-scale projective display, named as the Wide-Field Immersive Stereoscopic Environment (WISE). We also assessed the usability of the proposed approach through a novel user study that asked participants to pursue a rolling ball at variable speed in a virtual scene. Our results show that participants differ in their ability to carry out the task. We provide an explanation for the variable performance of the participants based on the locomotion technique.

References

  1. 1.
    Robinett, W., Holloway, R.: Implementation of flying, scaling and grabbing in virtual worlds. In: Proceedings of Symposium on I3D 1992, pp. 189–192. ACM (1992)Google Scholar
  2. 2.
    Laviola JR, J.J., Feliz, D.A., Keefe, D.F. Zeleznik, R.C.: Hands-free multi-scale navigation in virtual environments. In: Proceedings of Symposium on I3D 2001, pp. 9–15. ACM (2001)Google Scholar
  3. 3.
    Slater, M., Steed, A., Usoh, M.: The virtual treadmill: a naturalistic metaphor for navigation in immersive virtual environments. In: Göbel, M. (ed.) Virtual Environments 1995. Eurographics. Springer, Vienna (1995).  https://doi.org/10.1007/978-3-7091-9433-1_12Google Scholar
  4. 4.
    Templeman, J., Denbrook, P., Sibert, L.: Virtual locomotion: walking in place through virtual environments. Presence 8(6), 598–617 (1999)CrossRefGoogle Scholar
  5. 5.
    Yan, L., Allison, R.S., Rushton, S.K.: New simple virtual walking method-walking on the spot. In: Proceedings of 8th Annual IPT Symposium (2004)Google Scholar
  6. 6.
    Wendt, J.D., Whitton, M.C., Brooks, F.P.: GUD WIP: gait-understanding-driven walking-in-place. In: Proceedings of IEEE VR, pp. 51–58 (2010)Google Scholar
  7. 7.
    Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking (short paper presentation). In: Eurographics (2001)Google Scholar
  8. 8.
    Nilsson, N.C., Serafin, S., Laursen, M.H., Pedersen, K.S., Sikstrom, E., Nordahl, R.: Tapping-In-Place: increasing the naturalness of immersive walking-in-place locomotion through novel gestural input. In: IEEE Symposium on 3D UI, pp. 31–38 (2013)Google Scholar
  9. 9.
    Hollerbach, J.M.: Locomotion interfaces. In: Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 239–254. Lawrence Erlbaum Assoc., Inc. (2002)Google Scholar
  10. 10.
    Souman, J.L., Robuffo Giordano, P., Schwaiger, M., Frissen, I., Thummel, T., Ulbrich, H., De Luca, A., Bulthoff, H.H., Ernst, M.O.: Cyberwalk: Enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. 8, 4 (2001)Google Scholar
  11. 11.
    Iwata, H.: Walking about virtual environments on an infinite floor. In: Proceedings of IEEE VR, pp. 286–293 (1999)Google Scholar
  12. 12.
    Iwata, H., Yano, H., Nakaizumi, F.: Gait master: a versatile locomotion interface for uneven virtual terrain. In: Proceedings of IEEE VR, pp. 131–137 (2001)Google Scholar
  13. 13.
    Allison, R.S., Harris, L.R., Jenkin, M., Pintilie G., Redlick, F., Zikovitz, D.C.: First steps with a rideable computer. In: Proceedings of IEEE VR, pp. 169–175 (2000)Google Scholar
  14. 14.
    Medina, E., Fruland, R., Weghorst, S.: Virtusphere: walking in a human size VR “Hamster Ball”. Proc. Hum. Fact. Ergon. Soc. Annu. Meet. 52(27), 2102–2106 (2008)CrossRefGoogle Scholar
  15. 15.
    Park, H.J., Lee, H.J., Kang, T.H., Moon, J.I.: Study on automatic speed adaptation treadmills. In: 15th ICCAS, pp. 1898–1900 (2015)Google Scholar
  16. 16.
    von Zitzewitz, J., Bernhardt, M., Riener, R.: A novel method for automatic treadmill speed adaptation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 401–409 (2007)CrossRefGoogle Scholar
  17. 17.
    Souman, J.L., Giordano, P.R., Frissen, I., De Luca, A., Ernst, M.O.: Making virtual walking real: Perceptual evaluation of a new treadmill control algorithm. ACM Trans. Appl. Percept. 7, 2 (2010)CrossRefGoogle Scholar
  18. 18.
    Su, S.W., Wang, L., Celler, B.G., Savkin, A.V.: Heart rate control during treadmill exercise. In: 27th Annual International Conference in EMBS, pp. 2471–2474 (2005)Google Scholar
  19. 19.
    Yoon, J., Park, H.S., Damiano, D.L.: A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation. J. Neuroeng. Rehab. 9, 62 (2012)CrossRefGoogle Scholar
  20. 20.
    Park, J., Patel, A., Curtis, D., Teller, S., Ledlie, J.: Online pose classification and walking speed estimation using handheld devices. In: Proceedings of ACM Conference UbiComp, pp. 113–122 (2012)Google Scholar
  21. 21.
    Rose, J., Gamble, J.G.: Human Walking. Williams & Wilkins, Baltimore (1994)Google Scholar
  22. 22.
    Maneewongvatana, S., Mount, D.M.: On the efficiency of nearest neighbor searching with data clustered in lower dimensions. In: Proceedings of ICCS 2001, pp. 842–851 (2001)CrossRefGoogle Scholar
  23. 23.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)CrossRefGoogle Scholar
  24. 24.
    Vijayakar, A., Hollerbach, J.M.: A proportional control strategy for realistic turning on linear treadmills. In: Proceedings of 10th Symposium on HAPTICS, pp. 231–238 (2002)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering and Computer ScienceYork UniversityTorontoCanada

Personalised recommendations