Skip to main content

Wear of Composites

Abstract

This chapter includes an extensive review of the fundamental science aspects of tribology, focusing mainly on wear and friction of metal matrix composites (MMCs), specifically those made from light alloys and reinforcements of ceramic materials. In addition, this chapter deals with some fundamental aspects in the study of the wear of materials taking into account the different factors on wear rate of MMC, such as normal applied load, sliding speed, quantity, size, and shape of reinforcements used in the manufacture of the composites. Finally, some research work done by this working group studied the wear behavior of AZ91E/TiC and AZ91E/AlN composites. For AZ91E/TiC composites it was found that the higher normal load applied the higher weight loss. It is presumed that higher load causes fractures and debonding of reinforcing particles increasing wear. For AZ91E/AlN composites fabricated by the stir casting process adding 10, 15, and 20 vol.% AlNp, the wear behavior was evaluated. Additionally, some effects of heat treatments applied to MMC on the wear resistance were evaluated.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-91854-9_7
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-91854-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4
Fig. 7.5
Fig. 7.6
Fig. 7.7
Fig. 7.8
Fig. 7.9
Fig. 7.10
Fig. 7.11
Fig. 7.12
Fig. 7.13

References

  1. Jost HP (1976) Economic impact of tribology. In: Proceeding of the 20th Meeting of the Mechanical Failures Prevention Group

    Google Scholar 

  2. Pinkus O, Wilcock DF (1997) Strategy for energy conservation through tribology. In: Tribology in Energy Technology Workshop American Society of Mechanical Engineers

    Google Scholar 

  3. Holmberg K, Anderson P, Erdemir A (2012) Global energy consumption due to friction in passenger cars. Tribol Int 47:221–234

    CrossRef  Google Scholar 

  4. Rabinowicz E (1995) Friction and wear of materials. Wiley, New York

    Google Scholar 

  5. Archard J (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988

    CrossRef  Google Scholar 

  6. Hutchings IM (1992) Tribology: friction and wear of engineering materials. BH, p 112

    Google Scholar 

  7. Glossary of Terms (1992) ASM handbook, friction, lubrication and wear technology. ASM Int 18:21

    Google Scholar 

  8. Brushan B (2013) Introduction to tribology, 2nd edn. Wiley, New York

    CrossRef  Google Scholar 

  9. Kok M, Ozdin K (2007) Wear resistance of aluminum alloy and its composites reinforced by Al2O3. J Mater Process Technol 183:301–309

    CrossRef  Google Scholar 

  10. Manoj B, Basu B, Murthy V et al (2005) The role of tribochemistry on fretting wear of Mg-SiC particulate. Compos Part A 36:13–23

    CrossRef  Google Scholar 

  11. Suh N (1973) The delamination theory of wear. Wear 25:111

    CrossRef  CAS  Google Scholar 

  12. Ramakoteswara V, Ramanaiah M, Sarcar M (2016) Dry sliding wear behavior of TiC-AA7075 metal matrix composites. Int J Appl Sci Eng 14(1):27–37

    Google Scholar 

  13. Lim C, Lim S, Gupta M (2003) Wear behaviour of SiCp-reinforced magnesium matrix composites. Wear 255:629–637

    CrossRef  CAS  Google Scholar 

  14. Nguyen Q, Sim Y, Gupta M, Lim C (2014) Tribology characteristics of magnesium alloy AZ31B and its composites. Tribol Int Part B 82:464–471

    CrossRef  Google Scholar 

  15. Asif M, Chandra K, Misra P (2011) Development of aluminum hybrid metal matrix composites for heavy duty applications. J Miner Mater Charact Eng 10(14):1337–1344

    Google Scholar 

  16. Selvam B, Marimuthu P, Narayanasamy R et al (2014) Dry sliding wear behavior of zinc oxide reinforced magnesium matrix nano-composites. Mater Des 58:475–481

    CrossRef  CAS  Google Scholar 

  17. Falcón L, Bedolla E, Lemus J (2011) Wear performance of TiC as reinforcement of a magnesium alloy matrix composite. Compos Part B 42:275–279

    CrossRef  Google Scholar 

  18. Arreola C (2016) Evaluación de propiedades mecánicas y comportamiento al desgaste de compuestos AZ91E/AlN fabricados por fundición con agitación. Master Thesis, Instituto Investigación Metalurgia Materiales, UMSNH, México

    Google Scholar 

  19. Sharma S, Andand B, Krishna M (2000) Evaluation of sliding wear behavior of feldspar particle-reinforced magnesium alloy composites. Wear 241:33–40

    CrossRef  CAS  Google Scholar 

  20. Saravanan R, Surappa M (2000) Fabrication and characterization of pure magnesium-30 vol. % SiCp particle composite. Mater Sci Eng A276:108–116

    CrossRef  CAS  Google Scholar 

  21. Narayanasamy P, Selvakumar N, Balasundar P (2015) Effect of hybridizing MoS2 on the tribological behaviour of Mg–TiC composites. Trans Indian Inst Met 68:911–925

    CrossRef  CAS  Google Scholar 

  22. Prakash K, Balasundar P, Nagaraja S et al (2016) Mechanical and wear behaviour of Mg-SiC-Gr hybrid composites. J Magnes Alloys 4:197–206

    CrossRef  Google Scholar 

  23. Xiu K, Wang HY, Sui HL et al (2006) The sliding wear behavior of TiC/AZ91 magnesium matrix composites. J Mater 41:7052–7058

    CrossRef  CAS  Google Scholar 

  24. Alpas A, Zhang J (1992) Effect of SiC particulate reinforcement on the dry sliding wear of aluminium-silicon alloys (A356). Wear 155:83–104

    CrossRef  CAS  Google Scholar 

  25. Alahelisten A, Bergman F, Olsson M, Hogmark S (1993) On the wear of aluminium and magnesium metal matrix composites. Wear 165:221–226

    CrossRef  CAS  Google Scholar 

  26. Basavarajappa S, Chandramohan G, Mahadevan A (2007) Influence of speed on the dry sliding wear behavior and subsurface deformation on hybrid metal matrix composite. Wear 262:1007–1012

    CrossRef  CAS  Google Scholar 

  27. Rajaneesh N, Sadashivappa K (2011) Dry sliding wear behavior of SiC particles reinforced zinc-aluminium (ZA43) alloy metal matrix composites. J Miner Mater Charact Eng 10(5):419–425

    Google Scholar 

  28. Shanthi M, Lim C, Lu L (2007) Effects of grain size on the wear of recycled AZ91 Mg. Tribol Int 40:335–338

    CrossRef  CAS  Google Scholar 

  29. Lim C, Leo D, Gupta M (2005) Wear of magnesium composites reinforced with nano-sized alumina particulates. Wear 259:620–625

    CrossRef  CAS  Google Scholar 

  30. Gopalakrishnan S, Murugan N (2012) Production and wear characterization of AA 6061 matrix titanium carbide particle reinforced composite by enhanced stir casting method. Compos B 43:302–308

    CrossRef  CAS  Google Scholar 

  31. Lakshmipathy J, Kulendran B (2014) Reciprocating wear behaviour of 7075Al/SiC and 6061/Al2O3 composites: a study of effect of reinforcement, stroke and load. Tribol Ind 36(2):117–126

    Google Scholar 

  32. Ramírez REJ (2015) Thesis: Efecto del tratamiento térmico T6 sobre las propiedades tribológicas del compuesto Al-2024/TiC, Tesis Universidad Autónoma de Coahuila

    Google Scholar 

  33. Miyajima T, Iwai Y (2003) Effects of reinforcements on sliding wear behaviour of aluminium matrix composites. Wear 255:606–616

    CrossRef  CAS  Google Scholar 

  34. Zou X, Miyahara H, Yamamoto K et al (2003) Sliding wear behaviour of Al-Si-Cu composites reinforced with SiC particles. Mater Sci Technol 19(11):1519–1526

    CrossRef  CAS  Google Scholar 

  35. Maleque M, Radhi M, Rahman M (2016) Wear study of Mg-SiCp reinforcement aluminium metal matrix composite. J Mech Eng Sci 10:1758–1764

    CrossRef  CAS  Google Scholar 

  36. Chelliah N, Singh H, Surappa M (2016) Correlation between microstructure and wear behavior of AZX915 Mg-alloy reinforced with 12 wt% TiC particles by stir-casting process. J Magnes Alloy 4:306–313

    CrossRef  CAS  Google Scholar 

  37. Kaczmar J, Naplocha K (2010) Wear behavior of composite materials based on 2024 Al-alloy reinforced with δ-alumina fibers. J Achiev Mater Manuf Eng 43:8–93

    Google Scholar 

  38. Shivaprakash Y, Basavaraj Y, Sreenivasa K (2013) Comparative study of tribological characteristics of AA2024+10% fly ash composite in non-heat treated and heat treated conditions. Int J Res Eng Technol 2:175–280

    Google Scholar 

  39. Sameezadeh M, Emamy M, Farhangi H (2011) Effects of particulate reinforcement and heat treatment on the hardness and wear properties of AA 2024-MoSi2 nanocomposites. Mater Des 32:2157–2164

    CrossRef  CAS  Google Scholar 

  40. Yamanoglu R, Karakulak E, Zeren A et al (2013) Effect of heat treatment on the tribological properties of Al-Cu-Mg/nano SiC composites. Mater Des 49:820–825

    CrossRef  CAS  Google Scholar 

  41. Suresh K, Niranjan B, Jebaraj M et al (2003) Tensile and wear properties of aluminium composites. Wear 255:638–642

    CrossRef  CAS  Google Scholar 

  42. Lim SC, Gupta M, Ren L (1999) The tribological properties of Al-Cu/SiCp metal matrix composites fabricated using the rheocasting technique. J Mater Process Technol 89–90:591–596

    CrossRef  Google Scholar 

  43. Sahin Y (2003) Wear behavior of aluminum alloy and its composites reinforced by SiC particles using statistical analysis. Mater Des 24:95–103

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Contreras Cuevas, A., Bedolla Becerril, E., Martínez, M.S., Lemus Ruiz, J. (2018). Wear of Composites. In: Metal Matrix Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-91854-9_7

Download citation