Skip to main content

Corrosion of Composites

  • Chapter
  • First Online:
Metal Matrix Composites

Abstract

This chapter describes the main research performed in corrosion of composites using TiC and SiC like reinforcement and Al, Ni, and some Al-Cux, Al-Mgx, and Al-Cu-Li alloys like matrix. The corrosion behavior of MMC is of great importance to predict its behavior in corrosive environments that can be exposed during service. The corrosion resistance of commercial aluminum alloy (2024) and binary Al-Cux and Al-Mgx alloys reinforced with TiC particles using a pressureless infiltration method has been evaluated in 3.5% NaCl solution. In addition, the corrosion behavior of some heat-treated composites, either artificially or naturally, was analyzed. Additionally, electrochemical study of nickel and Ni/TiC composite immersed in synthetic seawater was carried out. Effect of TiC as reinforcement into the Ni matrix was evaluated. The mechanism of corrosion was cells of differential aeration (pits and crevice). Finally, the corrosion behavior of Al-Cu-Li/SiC and Al-Cu/SiC composites in NaCl solutions with different pH values was studied. The addition of lithium and copper on the corrosion behavior of the composites was evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albiter A, Contreras A, Salazar M, Gonzalez JG (2006) Corrosion behaviour of aluminium metal matrix composites reinforced with TiC processed by pressureless melt infiltration. J Appl Electrochem 36:303–308

    Article  CAS  Google Scholar 

  2. Hihara LH, Latanision RM (1994) Corrosion of metal matrix composites. J Int Mater Rev 39(6):245–264

    Article  CAS  Google Scholar 

  3. Turnbull A (1992) Review of corrosion studies on aluminium metal matrix composites. Br Corros J 27(1):27–35

    Article  CAS  Google Scholar 

  4. Makar GL, Kruger J (1993) Corrosion of magnesium. Int Mater Rev 38:138–153

    Article  CAS  Google Scholar 

  5. Gusieva K, Davies CHJ, Scully JR, Birbilis N (2015) Corrosion of magnesium alloys: the role of alloying. Int Mater Rev 38:138–153

    Google Scholar 

  6. Melchers RE (2015) Bi-modal trends in the long-term corrosion of copper and high copper alloys. Corros Sci 95:51–61

    Article  CAS  Google Scholar 

  7. Leon CA, Lopez VH, Bedolla E, Drew RAL (2002) Wettability of TiC by commercial aluminum alloys. J Mater Sci 37:3509–3514

    Article  CAS  Google Scholar 

  8. Contreras A, Leon CA, Drew RAL, Bedolla E (2003) Wettability and spreading kinetics of Al and Mg on TiC. Scr Mater 48:1625–1630

    Article  CAS  Google Scholar 

  9. Contreras A, Albiter A, Perez R (2004) Microstructural properties of the Al-Mgx/TiC composites obtained by infiltration techniques. J Phys 16:S2241–S2249

    CAS  Google Scholar 

  10. Contreras A, Angeles-Chávez C, Flores O, Perez R (2007) Structural, morphological and interfacial characterization of Al–Mg/TiC composites. Mater Charact 58:685–693

    Article  CAS  Google Scholar 

  11. Contreras A, Bedolla E, Perez R (2004) Interfacial phenomena in wettability of TiC by Al–Mg alloys. Acta Mater 52:985–994

    Article  CAS  Google Scholar 

  12. Deuis RL, Green L, Subramanian C, Yellup JM (1997) Influence of the reinforcement phase on the corrosion of aluminium composite coatings. Corrosion 16:440–444

    CAS  Google Scholar 

  13. Deuis RL, Green L, Subramanian C, Yellup JM (1997) Corrosion behavior of aluminum composite coatings. Corrosion 53(11):880–890

    Article  CAS  Google Scholar 

  14. Nunes PCR, Ramanathan LV (1995) Corrosion behavior of alumina-aluminum and silicon carbide-aluminum metal-matrix composites. Corrosion 51(8):610–617

    Article  CAS  Google Scholar 

  15. Shimizu Y, Nishimura T, Matsushima I (1995) Corrosion resistance of Al-based metal matrix composites. Mater Sci Eng A 198:113–118

    Article  Google Scholar 

  16. Yao HY, Zhu RZ (1998) Interfacial preferential dissolution on silicon carbide particulate/aluminum composites. Corrosion 54(7):499–507

    Article  CAS  Google Scholar 

  17. Paciej RC, Agarwala VS (1988) Influence of processing variables on the corrosion susceptibility of metal-matrix composites. Corrosion 44(10):680–684

    Article  CAS  Google Scholar 

  18. Sun H, Koo EY, Wheat HG (1991) Corrosion behavior of SiCp/6061 Al metal matrix composites. Corrosion 47(10):741–753

    Article  CAS  Google Scholar 

  19. Trzaskoma P (1990) Pit morphology of aluminum alloy and silicon carbide/aluminum alloy metal matrix composites. Corrosion 46(5):402–409

    Article  CAS  Google Scholar 

  20. Hihara LH, Latanision RM (1992) Galvanic corrosion of aluminum-matrix composites. Corrosion 48:546–552

    Article  CAS  Google Scholar 

  21. Modi OP, Saxena M, Prasad BK, Jha AK, Das S, Yegneswaran AH (1998) Role of alloy matrix and dispersoid on corrosion behavior of cast aluminum alloy composites. Corrosion 54(2):129–134

    Article  CAS  Google Scholar 

  22. Contreras A, Salazar M, León CA, Drew RAL, Bedolla E (2000) The kinetic study of the infiltration of aluminum alloys into TiC. Mater Manuf Process 15(2):163–182

    Article  CAS  Google Scholar 

  23. Stearn M, Geary AL (1958) The mechanism of passivating type inhibitors. J Electrochem Soc 105:638–647

    Article  Google Scholar 

  24. Albiter A, Contreras A, Bedolla E, Perez R (2003) Structural and chemical characterization of precipitates in Al2024/TiC composites. Compos Part A 34:17–24

    Article  Google Scholar 

  25. Candan S (2009) An investigation on corrosion behaviour of pressure infiltrated Al-Mg alloy/SiC composites. Corros Sci 51(6):1392–1398

    Article  CAS  Google Scholar 

  26. Candan S (2004) Effect of SiC particle size on corrosion behavior of pressure infiltrated Al matrix composites in a NaCl solution. Mater Lett 58:3601–3605

    Article  CAS  Google Scholar 

  27. Ahmad Z, Abdul Aleem BJ (2002) Degradation of aluminum metal matrix composites in salt water and its control. Mater Des 23(2):173–180

    Article  CAS  Google Scholar 

  28. Chen C, Mansfeld F (1997) Corrosion protection of an Al 6092/SiC metal matrix composite. Corros Sci 39(6):1075–1082

    Article  CAS  Google Scholar 

  29. Kiourtsidis GE, Skolianos SM, Pavlidou EG (1999) A study on pitting behaviour of AA2024/SiC(p) composites using the double cycle polarization technique. Corros Sci 41(6):1185–1203

    Article  CAS  Google Scholar 

  30. Bedolla E, Lemus-Ruiz J, Contreras A (2012) Synthesis and characterization of Mg-AZ91/AlN composites. Mater Des 38:91–98

    Article  CAS  Google Scholar 

  31. Reyes A, Bedolla E, Perez R, Contreras A (2012) Effect of heat treatment on the mechanical and microstructural characterization of Mg-AZ91E/TiC composites. Compos Interfaces 24:1–17

    Google Scholar 

  32. Falcon LA, Bedolla E, Lemus J, Leon CA, Rosales I, Gonzalez-Rodriguez JG (2011) Corrosion behavior of Mg-Al/TiC composites in NaCl solution. Int J Corros 2011:1–7

    Article  Google Scholar 

  33. Pardo A, Merino MC, Coy AE, Arrabal R, Viejo F, Matykina E (2008) Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl. Corros Sci 50(3):823–834

    Article  CAS  Google Scholar 

  34. Nunez-Lopez CA, Skeldon P, Thompson GE, Lyon P, Karimzadeh H, Wilks TE (1995) The corrosion behaviour of Mg alloy ZC71/SiCp metal matrix composite. Corros Sci 37(5):689–708

    Article  CAS  Google Scholar 

  35. Suqiu J, Shusheng J, Guangping S, Jun Y (2005) The corrosion behaviour of Mg alloy AZ91D/TiCp metal matrix composite. Mater Sci Forum 488–489:705–708

    Google Scholar 

  36. Tiwari S, Balasubramaniam R, Gupta M (2007) Corrosion behavior of SiC reinforced magnesium composites. Corros Sci 49(2):711–725

    Article  CAS  Google Scholar 

  37. Salman SA, Ichino R, Okido M (2010) A comparative electrochemical study of AZ31 and AZ91 magnesium alloys. Int J Corros 2010:1–7

    Article  Google Scholar 

  38. Singh IB, Singh M, Das S (2015) A comparative corrosion behavior of Mg, AZ31 and AZ91 alloys in 3.5% NaCl solution. J Magnes Alloys 3:142–148

    Article  CAS  Google Scholar 

  39. Budruk AS, Balasubramaniam R, Gupta M (2008) Corrosion behaviour of Mg-Cu and Mg-Mo composites in 3.5% NaCl. Corros Sci 50(9):2423–2428

    Article  Google Scholar 

  40. Huang HH, Tsai WT, Lee JT (1996) Electrochemical behavior of A516 carbon steel in solutions containing hydrogen sulfide. Corrosion 52(9):708–716

    Article  CAS  Google Scholar 

  41. Ungaro ML, Carranza RM, Rodriguez MA (2012) Crevice corrosion study on alloy 22 by electrochemical noise technique. Proc Mater Sci 1:222–229

    Article  CAS  Google Scholar 

  42. Cottis RA (2001) Interpretation of electrochemical noise data. Corrosion 57:265–285

    Article  CAS  Google Scholar 

  43. Cowan KG, Harrison JA (1980) The automation of electrode kinetics—III. The dissolution of Mg in Cl, F and OH containing aqueous solutions. Electrochim Acta 25(7):899–912

    Article  CAS  Google Scholar 

  44. Harris SJ, Noble B, Trowsdale AJ (1996) Corrosion behaviour of aluminium matrix composites containing silicon carbide particles. Mater Sci Forum 217–222:1571–1579

    Article  Google Scholar 

  45. Duran-Olvera JM (2017) Análisis electroquímico del proceso de corrosión del composito TiC-Ni en agua de mar sintética. Thesis, Universidad Veracruzana, México

    Google Scholar 

  46. Duran-Olvera JM, Orozco-Cruz R, Galván-Martínez R, León CA, Contreras A (2017) Characterization of TiC/Ni composite immersed in synthetic seawater. MRS Adv 2(50):2865–2873

    Article  CAS  Google Scholar 

  47. Bhattacharyya JJ, Mitra R (2012) Effect of hot rolling temperature and thermal cycling on creep and damage behavior of powder metallurgy processed Al–SiC particulate composite. Mater Sci Eng 557:92–105

    Article  CAS  Google Scholar 

  48. Kala H, Mer KKS, Kumar S (2014) A review on mechanical and tribological behaviors of stir cast aluminum matrix composites. Proc Mater Sci 6:1951–1960

    Article  CAS  Google Scholar 

  49. Karbalaei-Akbari M, Rajabi S, Shirvanimoghaddam K, Baharvandi HR (2015) Wear and friction behavior of nanosized TiB2 and TiO2 particle-reinforced casting A356 aluminum nanocomposites: a comparative study focusing on particle capture in matrix. J Compos Mater 49(29):3665–3681

    Article  Google Scholar 

  50. Leon CA, Arroyo Y, Bedolla E (2006) Properties of AlN-based magnesium-matrix composites produced by pressureless infiltration. Mater Sci Forum 502:105–110

    Article  Google Scholar 

  51. Silverman DC (2003) Aqueous corrosion, corrosion: fundamentals, testing and protection. In: ASM handbook, vol 13A. ASM International, Materials Park, Ohio

    Google Scholar 

  52. ASTM D1141 Standard practice for the preparation of substitute ocean water (2013)

    Google Scholar 

  53. ASTM G5 Standard reference test method for making potentiostatic and potentiodynamic anodic polarization measurements (2014)

    Google Scholar 

  54. Bastos Segura JA (2000) Comportamiento electroquímico del níquel en una matriz de resina epoxidica. Doctoral dissertation, Universitat de Valencia

    Google Scholar 

  55. Zamin M, Ivés MB (1973) Effect of chloride ion concentration on the anodic dissolution behavior of nickel. Corrosion 29:319–324

    Article  CAS  Google Scholar 

  56. Real SG, Barbosa MR, Vilche JR, Arvía AJ (1990) Influence of chloride concentration on the active dissolution and passivation of nickel electrodes in acid sulfate solutions. J Electrochem Soc 137:1696–1702

    Article  CAS  Google Scholar 

  57. Jones DA (1996) Principles and prevention of corrosion, 2nd edn. Prentice-Hall, Upper Saddle River, pp 1–108, 146–150, 368–370

    Google Scholar 

  58. ASTM G1 standard practice for preparing, cleaning, and evaluation corrosion test specimens (2011)

    Google Scholar 

  59. Alvarez-Lemus N, Leon CA, Contreras A, Orozco-Cruz R, Galvan-Martinez R (2015) Chapter 15: electrochemical characterization of the aluminum–copper composite material reinforced with titanium carbide immersed in seawater. In: Perez R, Contreras A, Esparza R (eds) Materials characterization. Springer, Cham, pp 147–156

    Google Scholar 

  60. Galvan-Martinez R, Cabrera D, Galicia G, Orozco R, Contreras A (2013) Electrochemical characterization of the structural metals immersed in natural seawater: “in situ” measures. Mater Sci Forum 755:119–124

    Article  Google Scholar 

  61. Lugo-Quintal J, Díaz-Ballote L, Veleva L, Contreras A (2009) Effect of Li on the corrosion behavior of Al-Cu/SiCp composites. Adv Mater Res 68:133–144

    Article  CAS  Google Scholar 

  62. Abdallah M, Omar AA, Kandil A (2003) Production and corrosion behaviour of A7475 and Sicp. Bull Electrochem 19:405–412

    CAS  Google Scholar 

  63. Singh N, Vadera KK, Kumar AVR, Singh RS, Monga SS, Mathur GN (1999) Corrosion behaviour of 2124 aluminium alloy-silicon carbide metal matrix composites in sodium chloride environment. Bull Electrochem 15:120–123

    CAS  Google Scholar 

  64. Bhat MSN, Surappa MK, Nayak HVS (1991) Corrosion behaviour of silicon carbide particle reinforced 6061/Al alloy composites. J Mater Sci 26(18):4991–4996

    Article  CAS  Google Scholar 

  65. Sun H, Koo EY, Wheat HG (1991) Interfacial preferential dissolution on silicon carbide particulate/aluminum composites. Corrosion 47(9):741–749

    Article  CAS  Google Scholar 

  66. Rohatgi PK, Xiang CH, Gupta N (2018) Aqueous corrosion of metal matrix composites. Mater Sci Eng 4:287–312

    Google Scholar 

  67. Contreras A, Lopez VH, Bedolla E (2004) Mg/TiC composites manufactured by pressureless melt infiltration. Scr Mater 51:249–253

    Article  CAS  Google Scholar 

  68. Kolman DG, Butt DP (1997) Corrosion behavior of a novel SiC/Al2O3/Al composite exposed to chloride environments. J Electrochem Soc 144:3785–3791

    Article  CAS  Google Scholar 

  69. Hwang WS, Kim HW (2002) Galvanic coupling effect on corrosion behavior of Al alloy-matrix composites. Met Mater Int 8:571–575

    Article  CAS  Google Scholar 

  70. Pardo A, Merino MC, Arrabal R, Feliu S, Viejo F, Carboneras M (2005) Enhanced corrosion resistance of A3xx.x/SiCp composites in chloride media by La surface treatments. Electrochim Acta 51:4367–4378

    Article  Google Scholar 

  71. Pardo A, Merino MC, Arrabal R, Merino S, Viejo F, Carboneras M (2006) Effect of Ce surface treatments on corrosion resistance of A3xx.x/SiCp composites in salt fog. Surf Coat Technol 200:2938–2947

    Article  CAS  Google Scholar 

  72. Pardo A, Merino S, Merino MC, Barroso I, Mohedano M, Arrabal R, Viejo F (2009) Corrosion behaviour of silicon carbide particle reinforced AZ92 magnesium alloy. Corros Sci 51:841–849

    Article  CAS  Google Scholar 

  73. Pardo A, Merino MC, Arrabal R, Feliu S (2007) Effect of La surface coatings on oxidation behavior of aluminum alloy/SiCp composites. Oxid Met 67:6786

    Article  Google Scholar 

  74. Datta J, Datta S, Banerjee MK, Bandyopadhyay S (2004) Beneficial effect of scandium addition on the corrosion behavior of Al–Si–Mg–SiCp metal matrix composites. Compos Part A 35:1003–1008

    Article  Google Scholar 

  75. Staley JT, Lege DJ (1993) Advances in aluminium alloy products for structural applications in transportation. J Phys Colloq 3:C7-179–C7-190

    Google Scholar 

  76. Rao KTV, Ritchie RO (1998) High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite. Acta Mater 46(12):4167–4180

    Article  CAS  Google Scholar 

  77. Roper GW, Attwood PA (1995) Corrosion behaviour of aluminium matrix composites. J Mater Sci 30:898–903

    Article  CAS  Google Scholar 

  78. Murthy KSN, Dwarakadasa ES (1995) Role of Li+ ions in corrosion behaviour of 8090 Al–Li alloy and aluminium in pH 12 aqueous solutions. Br Corros J 30:111–115

    CAS  Google Scholar 

  79. Salghi R, Bazzi L, Zaafrani M (2003) Effet d’ínhibition de la corrosión de deux alliages d’aluminium 6063 et 3003 par quelques cations metallique en milieu chlorure. Acta Chim Slov 50:491–495

    CAS  Google Scholar 

  80. Ambat R, Dwarakadasa ED (1992) The influence of pH on the corrosion of medium strength aerospace alloys 8090, 2091 and 2014. Corros Sci 33:681–690

    Article  CAS  Google Scholar 

  81. Damborenea JJ, Conde A (2000) Intergranular corrosion of 8090 Al–Li: interpretation by electrochemical impedance spectroscopy. Br Corros J 35:48–53

    Article  Google Scholar 

  82. Davo B, Damborenea JJ (2004) Corrosión e inhibición en aleaciones de aluminio de media resistencia. Rev Metal 40:442–446

    Article  CAS  Google Scholar 

  83. Davo B, Damborenea JJ (2004) Use of rare earth salts as electrochemical corrosion inhibitors for an Al–Li–Cu (8090) alloy in 3.56% NaCl. Electrochim Acta 49:4957–4965

    Article  CAS  Google Scholar 

  84. Davo B, Conde A, Damborenea JJ (2005) Inhibition of stress corrosion cracking of alloy AA8090 T-8171 by addition of rare earth salts. Corros Sci 47:1227–1237

    Article  CAS  Google Scholar 

  85. Diaz-Ballote L, Veleva L, Pech-Canul MA, Pech-Canul MI, Wipf DO (2004) Activity of SiC particles in Al-based metal matrix composites revealed by SECM. J Electrochem Soc 151:B299–B303

    Article  CAS  Google Scholar 

  86. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  87. Baldwin KR, Bates RI, Arnell RD, Smith CJE (1996) Aluminium-magnesium alloys as corrosion resistant coatings for steel. Corros Sci 38:155–170

    Article  CAS  Google Scholar 

  88. Kim Y, Buchheit RG (2007) A characterization of the inhibiting effect of Cu on metastable pitting in dilute Al–Cu solid solution alloys. Electrochim Acta 52:2437–2446

    Article  CAS  Google Scholar 

  89. Ralston KD, Birbilis N, Cavanaugh MK, Weyland M, Muddle BC, Marceau RKW (2010) Role of nanostructure in pitting of Al–Cu–Mg alloys. Electrochim Acta 55:7834–7842

    Article  CAS  Google Scholar 

  90. Sankaran KK, Grant NJ (1980) The structure and properties of splat-quenched aluminum alloy 2024 containing lithium additions. Mater Sci Eng 44:213–227

    Article  CAS  Google Scholar 

  91. Hatch JE (1984) Aluminum properties and physical metallurgy. American Society for Metals, Materials Park, Ohio

    Google Scholar 

  92. Garrard WN (1994) Corrosion behavior of aluminum-lithium alloys. Corrosion 50(3):215–225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Contreras Cuevas, A., Bedolla Becerril, E., Martínez, M.S., Lemus Ruiz, J. (2018). Corrosion of Composites. In: Metal Matrix Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-91854-9_6

Download citation

Publish with us

Policies and ethics