Esophageal Adenocarcinoma: Pathogenesis and Epidemiology

  • Francisco Schlottmann
  • Marco G. Patti


Over the past 40 years, the incidence of esophageal adenocarcinoma (EAC) has increased more than sixfold in Western countries. The increase incidence of EAC has been attributed to the rising prevalence of obesity and gastroesophageal reflux disease (GERD). GERD affects an estimated 20% of the population in the US, and its prevalence is increasing worldwide. About 10–15% of patients with GERD will develop Barrett’s esophagus (BE). This metaplastic lesion due to the chronic injury produced by repeated reflux episodes involves genetic mutations that can lead to a malignant transformation. The development of EAC is characterized by the progression from BE metaplasia to dysplasia, and ultimately invasive carcinoma.


Esophageal adenocarcinoma Epidemiology Pathogenesis Gastroesophageal reflux disease Barrett’s esophagus 


  1. 1.
    GLOBOCAN 2012: Estimated cancer incidence, mortality, and prevalence worldwide in 2012. Available at: Accessed 11 Jan 2018.
  2. 2.
    Arnold M, Soerjomataram I, Ferlay J, et al. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64(3):381–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Devesa SS, Blot WJ, Fraumeni JF Jr. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer. 1998;83(10):2049–53.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hur C, Miller M, Kong CY, et al. Trends in esophageal adenocarcinoma incidence and mortality. Cancer. 2013;119(6):1149–58.CrossRefPubMedGoogle Scholar
  5. 5.
    El-Serag HN, Sweet S, Winchester CC, et al. Update on the epidemiology of gastro-esophageal reflux disease: a systematic review. Gut. 2014;63:871–80.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lagergren J. Influence of obesity on the risk of esophageal disorders. Nat Rev Gastroenterol Hepatol. 2011;8(6):340–7.CrossRefPubMedGoogle Scholar
  7. 7.
    Renehan AG, Tyson M, Egger M, et al. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78.CrossRefPubMedGoogle Scholar
  8. 8.
    Arnold M, Laversanne M, Brown LM, et al. Predicting the future burden of esophageal cancer by histological subtype: international trends in incidence up to 2030. Am J Gastroenterol. 2017;112(8):1247–55.CrossRefPubMedGoogle Scholar
  9. 9.
    Johansson J, Hakansson HO, Mellblom L, et al. Prevalence of precancerous and other metaplasia in the distal oesophagus and gastro-oesophageal junction. Scand J Gastroenterol. 2005;40:893–902.CrossRefPubMedGoogle Scholar
  10. 10.
    Shaheen NJ, Falk GW, Iyer PG, et al. ACG clinical guideline: diagnosis and management of Barrett’s esophagus. Am J Gastroenterol. 2016;111:30–50.CrossRefPubMedGoogle Scholar
  11. 11.
    Bhat S, Coleman HG, Yousef F, et al. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J Natl Cancer Inst. 2011;103:1049–57.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bandla S, Peters JH, Ruff D, et al. Comparison of cancer-associated genetic abnormalities in columnar-lined esophagus tissues with and without goblet cells. Ann Surg. 2014;260:72–80.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lieberman DA. Risk factors for Barrett’s esophagus in community-based practice. Am J Gastroenterol. 1997;92:1293–7.PubMedGoogle Scholar
  14. 14.
    Oberg S, Johansson J, Wenner J, et al. Metaplastic columnar mucosa in the cervical esophagus after esophagectomy. Ann Surg. 2002;235:338–45.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    O’Riordan JM, Tucker ON, Byrne PJ, et al. Factors influencing the development of Barrett’s epithelium in the esophageal remnant post-esophagectomy. Am J Gastroenterol. 2004;99:205–11.CrossRefPubMedGoogle Scholar
  16. 16.
    Tobey NA, Hosseini SS, Argote CM, et al. Dilated intercellular spaces and shunt permeability in non-erosive acid-damaged esophageal epithelium. Am J Gastroenterol. 2004;99:13–22.CrossRefPubMedGoogle Scholar
  17. 17.
    Tobey NA, Orlando RC. Mechanisms of acid injury to rabbit esophageal epithelium. Role of basolateral cell membrane acidification. Gastroenterology. 1991;101:1220–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Souza RF, Krishnan K, Spechler SJ. Acid, bile, and CDX: the ABCs of making Barrett’s metaplasia. Am J Gastrointest Liver Physiol. 2008;295:211–8.CrossRefGoogle Scholar
  19. 19.
    Sarosi G, Brown G, Jaiswal K, et al. Bone marrow progenitor cells contribute to esophageal regeneration and metaplasia in a rat model of Barrett’s esophagus. Dis Esophagus. 2008;21(1):43–50.CrossRefPubMedGoogle Scholar
  20. 20.
    Nakagawa H, Whelan K, Lynch JP. Mechanisms of Barrett’s oesophagus: intestinal differentiation, stem cells, and tissue models. Best Pract Res Clin Gastroenterol. 2015;29(1):3–16.CrossRefPubMedGoogle Scholar
  21. 21.
    DeMeester SR, DeMeester TR. Columnar mucosa and intestinal metaplasia of the esophagus: fifty years of controversy. Ann Surg. 2000;231:303–21.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Oberg S, Ritter MP, Crookes PF, et al. Gastroesophageal reflux disease and mucosal injury with emphasis on short-segment Barrett’s esophagus and duodenogastroesophageal reflux. J Gastrointest Surg. 1998;2:547–53.CrossRefPubMedGoogle Scholar
  23. 23.
    Fein M, Ireland AP, Ritter MP, et al. Duodenogastric reflux potentiates the injurious effects of gastroesophageal reflux. J Gastrointest Surg. 1997;1:27–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Kauer WK, Peters JH, DeMeester TR, et al. Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg. 1995;222:525–31.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Oberg S, Peters JH, DeMeester TR, et al. Determinants of intestinal metaplasia within the columnar-lined esophagus. Arch Surg. 2000;135(6):651–5.CrossRefPubMedGoogle Scholar
  26. 26.
    Theisen J, Peters JH, Fein M, et al. The mutagenic potential of duodenoesophageal reflux. Ann Surg. 2005;241:63–8.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Kazumori H, Ishihara S, Rumi MA, et al. Bile acids directly augment caudal related homeobox gene Cdx2 expression in oesophageal keratinocytes in Barrett’s epithelium. Gut. 2006;55:16–25.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Tamagawa Y, Ishimura N, Uno G, et al. Bile acids induce Delta-like 1 expression via Cdx2-dependent pathway in the development of Barrett’s esophagus. Lab Invest. 2016;96(3):325–37.CrossRefPubMedGoogle Scholar
  29. 29.
    Reid BJ, Sanchez CA, Blount PL, et al. Barrett’s esophagus: cell cycle abnormalities in advancing stages of neoplastic progression. Gastroenterology. 1993;105:119–29.CrossRefPubMedGoogle Scholar
  30. 30.
    Hvid-Jensen F, Pedersen L, Drewes AM, et al. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N Engl J Med. 2011;365:1375–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Dulai GS, Guha S, Kahn KL, et al. Preoperative prevalence of Barrett’s esophagus in esophageal adenocarcinoma: a systematic review. Gastroenterology. 2002;122:26–33.CrossRefPubMedGoogle Scholar
  32. 32.
    Gopal DV, Lieberman DA, Magaret N, et al. Risk factors for dysplasia in patients with Barrett’s esophagus (BE): results from a multicenter consortium. Dig Dis Sci. 2003;48:1537–41.CrossRefPubMedGoogle Scholar
  33. 33.
    Hampel H, Abraham NS, El-Serag HB. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann Intern Med. 2005;143:199–211.CrossRefPubMedGoogle Scholar
  34. 34.
    Singh S, Sharma AN, Murad MH, et al. Central adiposity is associated with increased risk of esophageal inflammation, metaplasia, and adenocarcinoma: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:1399–412.CrossRefPubMedGoogle Scholar
  35. 35.
    Andrici J, Cox MR, Eslick GD. Cigarette smoking and the risk of Barrett’s esophagus: a systematic review and meta-analysis. J Gastroenterol Hepatol. 2013;28:1258–73.CrossRefPubMedGoogle Scholar
  36. 36.
    Singh S, Garg SK, Singh PP, et al. Acid-suppressive medications and risk of oesophageal adenocarcinoma in patients with Barrett’s oesophagus: a systematic review and meta-analysis. Gut. 2014;63:1229–37.CrossRefPubMedGoogle Scholar
  37. 37.
    Zhang S, Zhang XQ, Ding XW, et al. Cyclooxygenase inhibitors use is associated with reduced risk of esophageal adenocarcinoma in patients with Barrett’s esophagus: a meta-analysis. Br J Cancer. 2014;110:2378–88.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Singh S, Singh AG, Singh PP, et al. Statins are associated with reduced risk of esophageal cancer, particularly in patients with Barrett’s esophagus: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:620–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Desai TK, Krishnan K, Samala N, et al. The incidence of oesophageal adenocarcinoma in non-dysplastic Barrett’s oesophagus: a meta-analysis. Gut. 2012;61:970–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Singh S, Manickam P, Amin AV, et al. Incidence of esophageal adenocarcinoma in Barrett’s esophagus with low-grade dysplasia: a systematic review and meta-analysis. Gastrointest Endosc. 2014;79:897–909.CrossRefPubMedGoogle Scholar
  41. 41.
    Rastogi A, Puli S, El-Serag HB, et al. Incidence of esophageal adenocarcinoma in patients with Barrett’s esophagus and high-grade dysplasia: a meta-analysis. Gastrointest Endosc. 2008;67:394–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Francisco Schlottmann
    • 1
  • Marco G. Patti
    • 2
  1. 1.Department of SurgeryHospital Alemán of Buenos Aires, University of Buenos AiresBuenos AiresArgentina
  2. 2.Department of Medicine and SurgeryUniversity of North CarolinaChapel HillUSA

Personalised recommendations