Text Mining pp 157-179 | Cite as

Text Categorization: Evaluation

  • Taeho Jo
Part of the Studies in Big Data book series (SBD, volume 45)


This chapter is concerned with the schemes of evaluating text categorization systems.


  1. 9.
    Cai, D., He, X.: Manifold adaptive experimental design for text categorization. IEEE Trans. Knowl. Data Eng. 24, 707–719 (2011)CrossRefGoogle Scholar
  2. 13.
    Dong, Y., Han, K.: Boosting SVM classifiers by ensemble. In: Proceeding WWW ‘05 Special Interest Tracks and Posters of the 14th International Conference on World Wide Web, pp. 1072–1073 (2005)Google Scholar
  3. 23.
    Jo, T.: Neural based approach to keyword extraction from documents. Lect. Note Comput. Sci. 2667, 456–461 (2003)CrossRefGoogle Scholar
  4. 26.
    Jo, T.: Modified version of SVM for text categorization. Int. J. Fuzzy Log. Intell. Syst. 8, 52–60 (2008)CrossRefGoogle Scholar
  5. 30.
    Jo, T.: NTC (Neural Text Categorizer): neural network for text categorization. Int. J. Inf. Stud. 2, 83–96 (2010)Google Scholar
  6. 33.
    Jo, T.: Application of table based similarity to classification of bio-medical documents. In: The Proceedings of IEEE International Conference on Granular Computing, pp. 162–166 (2013)Google Scholar
  7. 34.
    Jo, T.: Simulation of numerical semantic operations on strings in medical domain. In: The Proceedings of IEEE International Conference on Granular Computing, pp. 167–171 (2013)Google Scholar
  8. 35.
    Jo, T.: Index optimization with KNN considering similarities among features. In: The Proceedings of 14th International Conference on Advances in Information and Knowledge Engineering, pp. 120–124 (2015)Google Scholar
  9. 47.
    Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Proceedings of European Conference on Machine Learning, pp. 137–142 (1998)CrossRefGoogle Scholar
  10. 55.
    Kreuzthaler, M., Bloice, M.D., Faulstich, L., Simonic, K.M., Holzinger, A.: A comparison of different retrieval strategies working on medical free texts. J. Univers. Comput. Sci. 17, 1109–1133 (2011)Google Scholar
  11. 59.
    Li, T., Zhu, S., Ogihara, M.: Hierarchical document classification using automatically generated hierarchy. J. Intell. Inf. Syst. 29, 211–230 (2007)CrossRefGoogle Scholar
  12. 85.
    Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34, 1–47 (2002)CrossRefGoogle Scholar
  13. 90.
    Tan, S.: An effective refinement strategy for KNN text classifier. Expert Syst. Appl. 30, 290–298 (2006)CrossRefGoogle Scholar
  14. 98.
    Yang, Y.: An evaluation of statistical approaches to MEDLINE indexing. In: Proceedings of the AMIA Annual Fall Symposium, pp. 358–362 (1996)Google Scholar
  15. 99.
    Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 42–49 (1999)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Taeho Jo
    • 1
  1. 1.School of Game, Hongik UniversitySeoulKorea (Republic of)

Personalised recommendations