Designing “Living” Evidence Networks for Health Optimisation: Knowledge Extraction of Patient-Relevant Outcomes in Mental Disorders

  • Hoang D. Nguyen
  • Øystein Eiring
  • Danny Chiang Choon Poo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10844)


Over 70 randomised controlled trials (RCTs) are published in MEDLINE every day; in which the volume and velocity of unstructured evidence data have become a great challenge to human manual processing capabilities. There is an emerging need for a dynamic, evolving design of “living” evidence networks as the best source of health optimisation in evidence-based medicine. This study, therefore, investigated the text and layout features of unstructured full-texts in the biomedical literature to design IT artefacts for building high-quality and up-to-date evidence networks of RCTs. As a result, network meta-analyses can be automated for comparative adverse effects of treatments in chronic disorders such as Major Depressive Disorder and Bipolar Disorder. The study outcomes extended the technological boundary of health optimisation technologies, and contributed to the cumulative development of patient-relevant health care and shared decision-making.


Evidence networks Living systematic reviews Health optimisation Knowledge extraction Major depressive disorder Bipolar disorder 


  1. 1.
    Eiring, Ø., Nytrøen, K., Kienlin, S., Khodambashi, S., Nylenna, M.: The development and feasibility of a personal health-optimization system for people with bipolar disorder. BMC Med. Inform. Decis. Mak. 17, 1–11 (2017)CrossRefGoogle Scholar
  2. 2.
    Burns, P., Rohrich, R., Chong, K.: The levels of evidence and their role in evidence-based medicine. Plast. Reconstr. Surg. 128, 305–310 (2011)CrossRefGoogle Scholar
  3. 3.
    Cochrane, A.L.: 1931–1971: a critical review, with particular reference to the medical profession. Med. year. 1979, 1 (2000)Google Scholar
  4. 4.
    Nguyen, Hoang D., Poo, D.C.C., Zhang, H., Wang, W.: Analysis and design of an mHealth intervention for community-based health education: an empirical evidence of coronary heart disease prevention program among working adults. In: Maedche, A., vom Brocke, J., Hevner, A. (eds.) DESRIST 2017. LNCS, vol. 10243, pp. 57–72. Springer, Cham (2017). Scholar
  5. 5.
    Bastian, H., Glasziou, P., Chalmers, I.: Seventy-five trials and eleven systematic reviews a day: how will we ever keep up? PLoS Med. 7, e1000326 (2010)CrossRefGoogle Scholar
  6. 6.
    Djulbegovic, B., Guyatt, G.H.: Progress in evidence-based medicine: a quarter century on. Lancet 6736, 1–9 (2017)Google Scholar
  7. 7.
    Shojania, K.G., Sampson, M., Ansari, M.T., Ji, J., Doucette, S., Moher, D.: How quickly do systematic reviews go out of date? A survival analysis. Ann. Intern. Med. 147, 224–233 (2007)CrossRefGoogle Scholar
  8. 8.
    Elliott, J.H., Synnot, A., Turner, T., Simmonds, M., Akl, E.A., McDonald, S., Salanti, G., Meerpohl, J., MacLehose, H., Hilton, J., Tovey, D., Shemilt, I., Thomas, J.: Living systematic review: 1. Introduction—the why, what, when, and how. J. Clin. Epidemiol. 91, 23–30 (2017)CrossRefGoogle Scholar
  9. 9.
    Kessler, R.C., Aguilar-Gaxiola, S., Alonso, J., Chatterji, S., Lee, S., Ormel, J., Ustün, T.B., Wang, P.S.: The global burden of mental disorders: an update from the WHO World Mental Health (WMH) surveys. Epidemiol. Psichiatr. Soc. 18, 23–33 (2009)CrossRefGoogle Scholar
  10. 10.
    Khan, K.S., Kunz, R., Kleijnen, J., Antes, G.: Five steps to conducting a systematic review. J. R. Soc. Med. 96, 118–121 (2003)CrossRefGoogle Scholar
  11. 11.
    Zhao, J., Bysani, P., Kan, M.-Y.: Exploiting classification correlations for the extraction of evidence-based practice information. In: AMIA Annual Symposium Proceedings, vol. 2012, pp. 1070–1078 (2012)Google Scholar
  12. 12.
    Kelly, C., Yang, H.: A system for extracting study design parameters from nutritional genomics abstracts. J. Integr. Bioinform. 10, 222 (2013)CrossRefGoogle Scholar
  13. 13.
    Kiritchenko, S., de Bruijn, B., Carini, S., Martin, J., Sim, I.: ExaCT: automatic extraction of clinical trial characteristics from journal publications. BMC Med. Inform. Decis. Mak. 10, 56 (2010)CrossRefGoogle Scholar
  14. 14.
    Higgins, J.P., Green, S.: Cochrane Handbook for Systematic Reviews of Interventions. Wiley, Chichester (2011)Google Scholar
  15. 15.
    Begg, C.: Improving the quality of reporting of randomized controlled trials: the CONSORT statement. JAMA 276, 637 (1996)CrossRefGoogle Scholar
  16. 16.
    Bossuyt, P.M., Reitsma, J.B., Bruns, D.E., Gatsonis, C.A., Glasziou, P.P., Irwig, L.M., Lijmer, J.G., David Moher, D.R., de Vet, H.C.W.: Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Clin. Chem. Lab. Med. 41, 68–73 (2003)Google Scholar
  17. 17.
    Jonnalagadda, S.R., Goyal, P., Huffman, M.D.: Automating data extraction in systematic reviews: a systematic review. Syst. Rev. 4, 78 (2015)CrossRefGoogle Scholar
  18. 18.
    Gionfriddo, M.R., Leppin, A.L., Brito, J.P., LeBlanc, A., Shah, N.D., Montori, V.M.: Shared decision-making and comparative effectiveness research for patients with chronic conditions: an urgent synergy for better health. J. Comp. Eff. Res. 2, 595–603 (2013)CrossRefGoogle Scholar
  19. 19.
    Eiring, Ø., Nylenna, M., Nytrøen, K.: Patient-important outcomes in the long-term treatment of bipolar disorder: a mixed-methods approach investigating relative preferences and a proposed taxonomy. Patient 9, 91–102 (2016)CrossRefGoogle Scholar
  20. 20.
    de Bruijn, B., Cherry, C., Kiritchenko, S., Martin, J., Zhu, X.: Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010. J. Am. Med. Inform. Assoc. 18, 557–562 (2011)CrossRefGoogle Scholar
  21. 21.
    Hassanzadeh, H., Groza, T., Hunter, J.: Identifying scientific artefacts in biomedical literature: the evidence based medicine use case. J. Biomed. Inform. 49, 159–170 (2014)CrossRefGoogle Scholar
  22. 22.
    Hsu, W., Speier, W., Taira, R.K.: Automated extraction of reported statistical analyses: towards a logical representation of clinical trial literature. In: AMIA Annual Symposium Proceedings, vol. 2012, pp. 350–359 (2012)Google Scholar
  23. 23.
    Hansen, M.J., Rasmussen, N.Ø., Chung, G.: A method of extracting the number of trial participants from abstracts describing randomized controlled trials. J. Telemed. Telecare 14, 354–358 (2008)CrossRefGoogle Scholar
  24. 24.
    Kim, S., Martinez, D., Cavedon, L., Yencken, L.: Automatic classification of sentences to support evidence based medicine. BMC Bioinform. 12, S5 (2011)CrossRefGoogle Scholar
  25. 25.
    Lin, S., Ng, J.-P., Pradhan, S., Shah, J., Pietrobon, R., Kan, M.-Y.: Extracting formulaic and free text clinical research articles metadata using conditional random fields. In: Proceedings of the NAACL HLT 2010 Second Louhi Workshop on Text and Data Mining of Health Documents, pp. 90–95 (2010)Google Scholar
  26. 26.
    Wallace, B.C., Trikalinos, T.A., Lau, J., Brodley, C.E., Schmid, C.H.: Semi-automated screening of biomedical citations for systematic reviews. BMC Bioinform. 11, 55 (2010)CrossRefGoogle Scholar
  27. 27.
    Nguyen, H.D., Poo, D.C.C.: Analysis and design of mobile health interventions towards informed shared decision making: an activity theory-driven perspective. J. Decis. Syst. 25, 397–409 (2016)CrossRefGoogle Scholar
  28. 28.
    Thokala, P., Devlin, N., Marsh, K., Baltussen, R., Boysen, M., Kalo, Z., Longrenn, T., Mussen, F., Peacock, S., Watkins, J., Ijzerman, M.: Multiple criteria decision analysis for health care decision making—an introduction: report 1 of the ISPOR MCDA emerging good practices task force. Value Health 19, 1–13 (2016)CrossRefGoogle Scholar
  29. 29.
    Belton, V., Stewart, T.J.: Multiple Criteria Decision Analysis: An Integrated Approach. Springer US, Boston (2002). Scholar
  30. 30.
    Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016)CrossRefGoogle Scholar
  31. 31.
    Patel, S.R., Bakken, S.: Preferences for participation in decision making among ethnically diverse patients with anxiety and depression. Community Ment. Health J. 46, 466–473 (2010)CrossRefGoogle Scholar
  32. 32.
    Cipriani, A., Furukawa, T.A., Salanti, G., Geddes, J.R., Higgins, J.P., Churchill, R., Watanabe, N., Nakagawa, A., Omori, I.M., McGuire, H., Tansella, M., Barbui, C.: Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet 373, 746–758 (2009)CrossRefGoogle Scholar
  33. 33.
    Miura, T., Noma, H., Furukawa, T.A., Mitsuyasu, H., Tanaka, S., Stockton, S., Salanti, G., Motomura, K., Shimano-Katsuki, S., Leucht, S., Cipriani, A., Geddes, J.R., Kanba, S.: Comparative efficacy and tolerability of pharmacological treatments in the maintenance treatment of bipolar disorder: A systematic review and network meta-analysis. Lancet Psychiatry 1, 351–359 (2014)CrossRefGoogle Scholar
  34. 34.
    Merikangas, K.R., Jin, R., He, J.-P., Kessler, R.C., Lee, S., Sampson, N.A., Viana, M.C., Andrade, L.H., Hu, C., Karam, E.G., Ladea, M., Medina-Mora, M.E., Ono, Y., Posada-Villa, J., Sagar, R., Wells, J.E., Zarkov, Z.: Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch. Gen. Psychiatry 68, 241–251 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hoang D. Nguyen
    • 1
  • Øystein Eiring
    • 2
  • Danny Chiang Choon Poo
    • 1
  1. 1.Department of Information Systems and Analytics, School of ComputingNational University of SingaporeSingaporeSingapore
  2. 2.Norwegian Knowledge Centre for the Health ServicesOsloNorway

Personalised recommendations