Towards a Collaborative, Interactive Web Services Composition Approach Based on an Intentional Group Recommender System

  • Meriem Kasmi
  • Yassine Jamoussi
  • Henda Hajjami Ben Ghézala
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10844)


Nowadays, organizations are integrating human-computer interaction (HCI) into their information systems. This trend resulted in gathering developers and end-users in different tasks, particularly, the interactive Web services composition (WSC) task. Indeed, to search for solutions that go beyond their individual limited views, an increasing demand of collaboration among users has emerged. However, they are still facing uncomfortable situations especially when they are invited to select the appropriate Web service among functionally similar ones. More support is then needed to provide an effective composition. In this regard, a group recommender system providing the required functionality while considering the users’ preferences, might be highly useful. In this paper, we present a holistic process spanning from capturing users requirements, constructing a global goal model “ColMAP” reflecting their intentions to performing a collaborative, interactive WSC. A step-by-step example illustrates the proposed process. We expect that this approach will pave the way for interactively, collaboratively engineered information systems.


Interactive Web services composition Collaboration Group recommendation MAP formalism 


  1. 1.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Inf. Process. Manag. 24(5), 513–523 (1988)CrossRefGoogle Scholar
  2. 2.
    Rolland, C., Loucopoulos, P., Kavakli, V., Nurcan, S.: Intention based modelling of organisational change: an experience report. In: Proceedings of the 4th CAISE/IFIP 8.1 International Workshop on Evaluation of Modeling Methods in Systems Analysis and Design, Heidelberg, pp. 1–36 (1999)Google Scholar
  3. 3.
    McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata. IRE Trans. Electron. Comput. EC-9(1), 39–47 (1960)CrossRefGoogle Scholar
  4. 4.
    Liang, Q., Bharadwaj, A., Lee, B.S.: Interactive and iterative service-composition-based approach to flexible information system development. Int. J. Web Serv. Res. 8(4), 81–107 (2011). Scholar
  5. 5.
    Rolland, C., Kaabi, R-S.: An intentional perspective to service modeling and discovery. In: Proceedings of the 31st International Computer Software and Applications Conference (COMPSAC), Beijing, pp. 455–460 (2007)Google Scholar
  6. 6.
    Mehandjiev, N., Lécué, F., Wajid, U., Namoun. A.: Assisted service composition for end users. In: Proceedings of the 8th IEEE European Conference on Web Services (ECOWS), Ayia Napa, pp. 131–138 (2010)Google Scholar
  7. 7.
    Driss, M., Jamoussi, Y., Moha, N., Jézéquel, J.M., Ghézala, H.H.B.: Une approche centrée exigences pour la composition de services web. Revue des Sciences et Technologies de l’Information-Série ISI: Ingénierie des Systèmes d’Information 16(2), 97–125 (2011)Google Scholar
  8. 8.
    Claro, D.B., Albers, P., Hao, J.-K.: Web services composition. In: Cardoso, J., Sheth, A.P. (eds.) Semantic Web Services, Processes and Applications, pp. 195–225. Springer, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Smith, B., Linden, G.: Two decades of recommender systems at IEEE Internet Comput. 21(3), 12–18 (2017)CrossRefGoogle Scholar
  10. 10.
    Gomez-Uribe, C.A., Hunt, N.: The netflix recommender system: algorithms, business value, and innovation. ACM Trans. Manag. Inf. Syst. 6(4), Article no. 13, 19 p. (2015).
  11. 11.
    van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In: Proceedings of the 5th International Symposium on Requirements Engineering (RE), pp. 249–263. IEEE, Toronto (2001)Google Scholar
  12. 12.
    Ben Messaoud, W., Ghedira, K., Ben Halima, Y., Ben Ghezala, H.: Survey of web service composition. In: Proceedings of the 5th International Conference on Information & Communication Technology and Accessibility (ICTA), pp. 1–7 (2015)Google Scholar
  13. 13.
    Aljoumaa, K., Assar, S., Souveyet, C.: Publishing intentional services using extended semantic annotation. In: Proceedings of the 5th International Conference on Research Challenges in Information Science (RCIS), pp. 1–9. IEEE, Gosier (2011)Google Scholar
  14. 14.
    Rolland, C., Kirsch-Pinheiro, M., Souveyet, C.: An intentional approach to service engineering. IEEE Trans. Serv. Comput. 3(4), 292–305 (2010)CrossRefGoogle Scholar
  15. 15.
    Krill, P.: Microsoft, IBM, SAP Discontinue UDDI Registry Effort (2005).–ibm–sap-discontinue-uddi-registry-effort.html. Accessed 22 Feb 2018
  16. 16.
    Berkovsky, S., Freyne, J.: Group-based recipe recommendations: analysis of data aggregation strategies. In: Proceedings of the 4th ACM conference on Recommender systems (RecSys), pp. 111–118. ACM, New York (2010).
  17. 17.
    Teruel, M.A., Navarro, E., López-Jaquero, V., Montero, F.: CSRML: a goal-oriented approach to model requirements for collaborative systems. In: Jeusfeld, M., Delcambre, L., Ling, T.W. (eds.) Conceptual Modeling (ER) 2011. LNCS, vol. 6998, pp. 33–46. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Castro, J., Kolp, M., Mylopoulo, J.: A requirements-driven development methodology. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) Advanced Information Systems Engineering (CAISE) 2001, pp. 108–123. Springer, London (2001). Scholar
  19. 19.
    Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: an agent- oriented software development methodology. Auton. Agents Multi-Agent Syst. 8(3), 203–236 (2004)CrossRefGoogle Scholar
  20. 20.
    van Lamsweerde, A., Letier, E.: Handling obstacles in goal oriented requirements engineering. IEEE Trans. Softw. Eng. 26(10), 978–1005 (2000)CrossRefGoogle Scholar
  21. 21.
    University of Toronto, Canada; GRL-Goal-oriented Requirement Language. Accessed 21 Nov 2017
  22. 22.
    Kang, Z., Peng, C., Cheng, Q.: Top-N recommender system via matrix completion. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), pp. 179–185 (2016)Google Scholar
  23. 23.
    Carey, J., Galletta, D.F., Kim, Y., Te’eni, D., Wildemuth, B., Zhang, P.: The role of human computer interaction in management information systems curricula: a call to action. Commun. Assoc. Inf. Syst. 13(1), 357–379 (2004)Google Scholar
  24. 24.
    Rong, W., Liu, K., Liang, L.: Personalized web service ranking via user group combining association rule. In: Proceedings of the 7th IEEE International Conference on Web Services (ICWS), pp. 445–452 (2009)Google Scholar
  25. 25.
    Yao, L., Sheng, Q.Z., Ngu, A.H., Yu, J., Segev, A.: Unified collaborative and content-based web service recommendation. IEEE Trans. Serv. Comput. 8(3), 453–466 (2015)CrossRefGoogle Scholar
  26. 26.
    Driss, M., Moha, N., Jamoussi, Y., Jézéquel, J.-M., Ben Ghézala, H.H.: A requirement-centric approach to web service modeling, discovery, and selection. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 258–272. Springer, Heidelberg (2010). Scholar
  27. 27.
    Cao, J., Fleming, S. D., Burnett, M.: An exploration of design opportunities for “gardening” end-user programmers’ ideas. In: Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), pp. 35–42. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Meriem Kasmi
    • 1
  • Yassine Jamoussi
    • 1
    • 2
  • Henda Hajjami Ben Ghézala
    • 1
  1. 1.Riadi LabENSI, University of ManoubaManoubaTunisia
  2. 2.Department of Computer Science, College of ScienceSultan Qaboos UniversityMuscatOman

Personalised recommendations