Design Principles for Room-Scale Virtual Reality: A Design Experiment in Three Dimensions

  • Jonas Schjerlund
  • Magnus Rotvit Perlt Hansen
  • Josefine Gill Jensen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10844)

Abstract

Virtual reality hardware, and software tools that support developing for virtual reality applications, are rapidly maturing. Specifically, room-scale virtual reality hardware that lets users walk around in virtual environments is becoming increasingly easier to purchase and adopt. With this follows a need for researching potential design theories for how to design and evaluate this class of systems. We contribute with a nascent design theory containing a high-level conceptual framework of dimensions and design principles of how to design room-scale virtual reality applications that create engaging user experiences. We identify meta-requirements from kernel theories from the human-computer interaction paradigm and evaluate two different VR artefacts and their applicability. Two central, higher level design principles are derived from the evaluation.

References

  1. 1.
    Anthes, C., Garcia-Hernandez, R.J., Wiedemann, M., Kranzlmuller, D.: State of the art of virtual reality technology. In: 2016 IEEE Aerospace Conference, pp. 1–19 (2016)Google Scholar
  2. 2.
    Lindeman, R.W., Beckhaus, S.: Crafting memorable VR experiences using experiential fidelity. In: Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology - VRST 2009, pp. 187–190 (2009)Google Scholar
  3. 3.
    Malaika, Y.: Interaction Design in VR: Valve’s Lessons (Valve Corporation). http://www.gdcvault.com/play/1022810/Interaction-Design-in-VR-The
  4. 4.
    Jagnow, R.: Lessons Learned from VR Prototyping (Google Inc.). http://www.gdcvault.com/play/1023926/Lessons-Learned-from-VR
  5. 5.
    Roberts, J., Ritsos, P., Badam, S.K., Brodbeck, D., Kennedy, J., Elmqvist, N.: Visualization beyond the desktop - the next big thing. IEEE Comput. Graph. Appl. 34(6), 26–34 (2014)CrossRefGoogle Scholar
  6. 6.
    Pausch, R., Proffitt, D., Williams, G.: Quantifying immersion in virtual reality. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH 1997, pp. 13–18 (1997)Google Scholar
  7. 7.
    Slater, M., Wilbur, S.: A framework for immersive virtual environments (FIVE): speculations on the role of presence in virtual environments. Presence Teleoper. Virtual Environ. 6, 603–616 (1997)CrossRefGoogle Scholar
  8. 8.
    Knibbe, J., Schjerlund, J., Petræus, M., Hornbæk, K.: The dream is collapsing: the experience of exiting VR. In: Proceedings 2018 CHI Conference on Human Factors in Computing Systems, CHI 2018 (2018)Google Scholar
  9. 9.
    Heinrich, P., Schwabe, G.: Communicating nascent design theories on innovative information systems through multi-grounded design principles. In: Tremblay, M.C., VanderMeer, D., Rothenberger, M., Gupta, A., Yoon, V. (eds.) DESRIST 2014. LNCS, vol. 8463, pp. 148–163. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06701-8_10CrossRefGoogle Scholar
  10. 10.
    Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q. 37, 337–355 (2013)CrossRefGoogle Scholar
  11. 11.
    Walls, J.G., Widmeyer, G.R., El Sawy, O.A., Sawy, O.A.E.: Building an information system design theory for vigilant EIS. Inf. Syst. Res. 3, 36–59 (1992)CrossRefGoogle Scholar
  12. 12.
    Bowman, D.A., Hodges, L.F.: Formalizing the design, evaluation, and application of interaction techniques for immersive virtual environments. J. Vis. Lang. Comput. 10, 37–53 (1999)CrossRefGoogle Scholar
  13. 13.
    Hornbæk, K., Oulasvirta, A.: What is interaction? In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems - CHI 2017, pp. 5040–5052 (2017)Google Scholar
  14. 14.
    Eidenberger, H., Mossel, A.: Indoor skydiving in immersive virtual reality with embedded storytelling. In: Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology - VRST 2015, pp. 9–12. ACM Press, New York (2015)Google Scholar
  15. 15.
    Nielsen, L.T., Møller, M.B., Hartmeyer, S.D., Ljung, T.C.M., Nilsson, N.C., Nordahl, R., Serafin, S.: Missing the point: an exploration of how to guide users’ attention during cinematic virtual reality. In: Proceedings of the 22nd ACM Conference Virtual Reality Software and Technology, pp. 229–232 (2016)Google Scholar
  16. 16.
    Lee, M., Kim, K., Daher, S., Raij, A., Schubert, R., Bailenson, J., Welch, G.: The wobbly table: increased social presence via subtle incidental movement of a real-virtual table. In: 2016 IEEE Virtual Reality (VR), pp. 11–17. IEEE (2016)Google Scholar
  17. 17.
    Argelaguet, F., Hoyet, L., Trico, M., Lecuyer, A.: The role of interaction in virtual embodiment: effects of the virtual hand representation. In: 2016 IEEE Virtual Reality (VR), pp. 3–10. IEEE (2016)Google Scholar
  18. 18.
    Sharlin, E., Watson, B., Kitamura, Y., Kishino, F., Itoh, Y.: On tangible user interfaces, humans and spatiality. Pers. Ubiquit. Comput. 8, 338–346 (2004)CrossRefGoogle Scholar
  19. 19.
    Yi, J.S., Kang, Y.A., Stasko, J., Jacko, J.: Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph. 13, 1224–1231 (2007)CrossRefGoogle Scholar
  20. 20.
    Pike, W.A., Stasko, J., Chang, R., O’Connell, T.A.: The Science of Interaction. Inf. Vis. 8, 263–274 (2009)CrossRefGoogle Scholar
  21. 21.
    Aylett, R., Louchart, S.: Towards a narrative theory of virtual reality. Virtual Real. 7, 2–9 (2003)CrossRefGoogle Scholar
  22. 22.
    Rosander, C.: Interactivity and spatiality – experiences of modelling real work places as virtual places in a VR collaborative environment, pp. 1–4 (2000)Google Scholar
  23. 23.
    Brade, J., Lorenz, M., Busch, M., Hammer, N., Tscheligi, M., Klimant, P.: Being there again – presence in real and virtual environments and its relation to usability and user experience using a mobile navigation task. Int. J. Hum. Comput. Stud. 101, 76–87 (2017)CrossRefGoogle Scholar
  24. 24.
    Steuer, J.: Defining virtual reality: dimensions determining telepresence. J. Commun. 42, 73–93 (1992)CrossRefGoogle Scholar
  25. 25.
    Kirsh, D.: The intelligent use of space. Artif. Intell. 73, 149–173 (1995)CrossRefGoogle Scholar
  26. 26.
    Rauhoeft, G., Leyrer, M., Thompson, W.B., Stefanucci, J.K., Klatzky, R.L., Mohler, B.J.: Evoking and assessing vastness in virtual environments. In: Proceedings of the ACM SIGGRAPH Symposium Applied Perception - SAP 2015, pp. 51–54 (2015)Google Scholar
  27. 27.
    Seibert, J., Shafer, D.M.: Control mapping in virtual reality: effects on spatial presence and controller naturalness. Virtual Real. 22(1), 79–88 (2017)CrossRefGoogle Scholar
  28. 28.
    Beaudouin-Lafon, M.: Instrumental interaction: an interaction model for designing post-WIMP user interfaces. In: Proceeding of the 18th International Conference on Human Factors in Computing Systems - CHI 2000, vol. 2, pp. 446–453 (2000)Google Scholar
  29. 29.
    Mason, S.: On games and links: extending the vocabulary of agency and immersion in interactive narratives. In: Koenitz, H., Sezen, T.I., Ferri, G., Haahr, M., Sezen, D., C̨atak, G. (eds.) ICIDS 2013. LNCS, vol. 8230, pp. 25–34. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02756-2_3CrossRefGoogle Scholar
  30. 30.
    Eskelinen, M.: Towards computer game studies. Digit. Creat. 12, 175–183 (2001)CrossRefGoogle Scholar
  31. 31.
    Roth, C., Koenitz, H.: Evaluating the user experience of interactive digital narrative. In: Proceedings of the 1st International Workshop Multimedia Alternate Realities - AltMM 2016, pp. 31–36 (2016)Google Scholar
  32. 32.
    Riedl, M.O., Young, R.M.: From linear story generation to branching story graphs. IEEE Comput. Graph. Appl. 26, 23–31 (2006)CrossRefGoogle Scholar
  33. 33.
    Muhanna, M.A.: Virtual reality and the CAVE: taxonomy, interaction challenges and research directions. J. King Saud Univ. – Comput. Inf. Sci. 27, 344–361 (2015)Google Scholar
  34. 34.
    Norman, D.A.: Affordance, conventions, and design. Interactions 6, 38–43 (1999)CrossRefGoogle Scholar
  35. 35.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems research. MIS Q. 28, 75–105 (2004)CrossRefGoogle Scholar
  36. 36.
    Venable, J., Pries-Heje, J., Baskerville, R.: FEDS: a framework for evaluation in design science research. Eur. J. Inf. Syst. 25, 77–89 (2016)CrossRefGoogle Scholar
  37. 37.
    Zimmerman, J., Forlizzi, J., Evenson, S.: Research through design as a method for interaction design research in HCI. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2007, pp. 493–502 (2007)Google Scholar
  38. 38.
    Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer Interaction. Wiley, Hoboken (2010)Google Scholar
  39. 39.
    Hornecker, E., Buur, J.: Getting a grip on tangible interaction: a framework on physical space and social interaction. In: Proceeding of the SIGCHI Conference Human Factors in Computing Systems, pp. 437–446 (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jonas Schjerlund
    • 1
  • Magnus Rotvit Perlt Hansen
    • 1
  • Josefine Gill Jensen
    • 1
  1. 1.Department of People and Technology, InformaticsRoskilde UniversityRoskildeDenmark

Personalised recommendations