Advertisement

Experimental Real-Time Tracking and Numerical Simulation of Hazardous Dust Dispersion in the Atmosphere

  • Stefano ParracinoEmail author
  • Jean François Ciparisse
  • Michela Gelfusa
  • Andrea Malizia
  • Maria Richetta
  • Pasquale Gaudio
Conference paper

Abstract

The increasing level of air pollution in our cities due to emissions from factories, vehicles and domestic heating, combined with the growing threat of terrorism, requires finding equipment and know-how that are useful for the detection and monitoring of hazardous substances and their dispersion into the atmosphere as quickly and far away as possible.

LiDAR/DIAL systems are considered powerful tools for atmospheric physics studies. Despite the progress achieved in remote sensing field, currently, their long-term use in the field still remains difficult due to economic and technical implications. For these reasons, an integrated framework is proposed in this paper. This framework is based on compact, fully automated, stand-off laser-based systems and numerical simulation tools for both real-time tracking and dispersion modelling of hazardous dust and/or particles into the atmosphere. This combined approach is fully general, and basically, it could be used for atmospheric physics studies and also to predict and prevent the diffusion of CBRNe attacks in critical areas. In fact, the primary goal of the framework will be to provide a rapid alert to the competent authorities if something strange is found and to compute a rapid and accurate prediction of the harmful plume spatio-temporal evolution.

Keywords

LiDAR/DIAL Real-time tracking Dispersion modelling Numerical simulation 

References

  1. 1.
    Fiocco, G., Smullin, L.D.: Detection of scattering layers in the upper atmosphere by optical radar. Nature. 199, 1275–1276 (1963).  https://doi.org/10.1038/1991275a0 ADSCrossRefGoogle Scholar
  2. 2.
    Collis, R.T.H.: Lidar: a new atmospheric probe. Q. J. R. Meteorol. Soc. 92(392), 220–230 (1966).  https://doi.org/10.1002/qj.49709239205 ADSCrossRefGoogle Scholar
  3. 3.
    Schotland, R.M.: Some observations of the vertical profile of water vapour by a laser optical radar. In: Proceedings of 4th Symposium Remote Sensing Environment, University of Michigan, Ann Arbor, 12–14 April, pp. 273–283 (1966)Google Scholar
  4. 4.
    Barret, E.W., Ben-Dov, O.: Application of Lidar to air pollution measurements. J. Appl. Meteorol. 6, 500–515 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    Measures, R.M.: Laser Remote Sensing – Fundamentals and Applications. Wiley, Malabar, FL (1992)Google Scholar
  6. 6.
    Kovalev, V., Eichenger, W.E.: Elastic Lidar, Theory, Practice and Analysis Methods. Wiley, Hoboken, NJ (2004)CrossRefGoogle Scholar
  7. 7.
    Weitkamp, C.: Lidar Range-Resolved Optical Remote Sensing of the Atmosphere. Springer, New York (2005)Google Scholar
  8. 8.
    Fujii, T., Fukuchi, T.: Laser Remote Sensing. Taylor & Francis, Boca Raton, FL (2005)Google Scholar
  9. 9.
    Parracino, S., Richetta, M., Gelfusa, M., Malizia, A., Bellecci, C., De Leo, L., Perrimezzi, C., Fin, A., Forin, M., Giappicucci, F., Grion, M., Marchese, G., Gaudio, P.: Real-time vehicle emissions monitoring using a compact LiDAR system and conventional instruments: first results of an experimental campaign in southern Italy suburban area. Opt. Eng. 55(10), 1–12 (2016).  https://doi.org/10.1117/1.OE.55.10.103107 CrossRefGoogle Scholar
  10. 10.
    Gaudio, P., Gelfusa, M., Malizia, A., Parracino, S., Richetta, M., De Leo, L., Perrimezzi, C., Bellecci, C.: Detection and monitoring of pollutant sources with LiDAR/dial techniques. J. Phys. Conf. Ser. 658(1), 1–9 (2015).  https://doi.org/10.1088/1742-6596/658/1/012004 CrossRefGoogle Scholar
  11. 11.
    Gelfusa, M., Murari, A., Malizia, A., Lungaroni, M., Peluso, E., Parracino, S., Vega, J., Gaudio, P.: Advanced signal processing based on support vector regression for LiDAR applications. Proc. SPIE. 9643, 1–11 (2015).  https://doi.org/10.1117/12.2194501 CrossRefGoogle Scholar
  12. 12.
    Gaudio, P., Malizia, A., Gelfusa, M., Murari, A., Parracino, S., Poggi, L.A., Lungaroni, M., Ciparisse, J.F., Di Giovanni, D., Cenciarelli, O., Carestia, M., Peluso, E., Gabbarini, V., Talebzadeh, S., Bellecci, C.: LiDAR and dial application for detection and identification: a proposal to improve safety and security. JINST. 12(1), 1–14 (2017).  https://doi.org/10.1088/1748-0221/12/01/C01054 CrossRefGoogle Scholar
  13. 13.
    Parracino, S., Gelfusa, M., Lungaroni, M., Peluso, E., Murari, A., Ciparisse, J.F., Malizia, A., Rossi, R., Gaudio, P.: First tests of a multiwavelength mini-DIAL system for the automatic detection of greenhouse gases. Proc. SPIE. 10424, 1–11 (2017).  https://doi.org/10.1117/12.2278585 CrossRefGoogle Scholar
  14. 14.
    Bellecci, C., Casella, L., Federico, S., Gaudio, P., Lo Feudo, T., Martellucci, S., Richetta, M.: Evolution study of a water vapor plume using a mobile CO2 DIAL system. Proc. SPIE. 4539, 180–190 (2002).  https://doi.org/10.1117/12.454440 ADSCrossRefGoogle Scholar
  15. 15.
    Bellecci, C., Francucci, M., Gaudio, P., Gelfusa, M., Martellucci, S., Richetta, M., Lo Feudo, T.: Application of a CO2 dial system for infrared detection of forest fire and reduction of false alarm. Appl. Phys. B. 87(2), 373–378 (2007).  https://doi.org/10.1007/s00340-007-2607-9 ADSCrossRefGoogle Scholar
  16. 16.
    COMSOL Multiphysics® Modeling Software.: https://www.comsol.it/
  17. 17.
    Ciparisse, J.F., Malizia, A., Poggi, L.A., Cenciarelli, O., Gelfusa, M., Carestia, M.C., Di Giovanni, D., Mancinelli, S., Palombi, L., Bellecci, C., Gaudio, P.: Numerical simulations as tool to predict chemical and radiological hazardous diffusion in case of nonconventional events. Mod. Sim. Eng. 2016, 1–11 (2016).  https://doi.org/10.1155/2016/6271853 CrossRefGoogle Scholar
  18. 18.
    European Parliament, Council of the European Union: Directive 2006/25/EC of the European parliament and of the council of 5 April 2006 on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation) (19th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC). Off. J. Eur. Union. L114, 38–59 (2006)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Stefano Parracino
    • 1
    Email author
  • Jean François Ciparisse
    • 1
  • Michela Gelfusa
    • 1
  • Andrea Malizia
    • 2
  • Maria Richetta
    • 1
  • Pasquale Gaudio
    • 1
  1. 1.Department of Industrial EngineeringUniversity of Rome Tor VergataRomeItaly
  2. 2.Department of Biomedicine and PreventionUniversity of Rome Tor VergataRomeItaly

Personalised recommendations